Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immunotherapy effective against neuroblastoma in children

18.05.2009
New therapy improves chances of living disease-free with difficult-to-treat childhood cancer

A phase III study has shown that adding an antibody-based therapy that harnesses the body's immune system resulted in a 20 percent increase in the number of children living disease-free for at least two years with neuroblastoma.

Neuroblastoma, a hard-to-treat cancer arising from nervous system cells, is responsible for 15 percent of cancer-related deaths in children. The researchers reported their findings – the first to show that immunotherapy could be effective against childhood cancer – online May 14, 2009 on the American Society of Clinical Oncology website in advance of presentation June 2.

"This establishes a new standard of care for a traditionally very difficult cancer in children," said lead author Alice Yu, MD, PhD, professor of pediatric hematology/oncology at the University of California, San Diego School of Medicine and the Moores UCSD Cancer Center. "High-risk neuroblastoma has always been a frustrating cancer to treat because, despite aggressive therapy, it has a high relapse rate."

The therapy targets a specific glycan (a complex sugar chain found on the surface of cells) on neuroblastoma cells called GD2, which inhibit the immune system from killing cancer cells. The antibody – ch14.18 – binds to this glycan, enabling various types of immune cells to attack the cancer.

Neuroblastoma – in which the cancer cells arise from nerve cells in the neck, chest, or abdomen – is the most common cancer diagnosed in the first year of life. Approximately 650 new cases of neuroblastoma are diagnosed in this country every year, and about 40 percent of patients have high-risk neuroblastoma. These high-risk patients are usually treated with surgery, intensive chemotherapy with stem cell rescue (in which patients' adult stem cells, removed before treatment, are returned after chemotherapy to restore the blood and immune system), and radiation therapy. Still, only 30 percent of patients survive.

Yu and her colleagues compared both the percentage of patients who were still alive without experiencing a recurrence after two years as well as overall survival in two groups of 113 patients each. Patients began the trial when they were newly diagnosed with high-risk neuroblastoma. After conventional treatment with surgery, chemotherapy, stem cell rescue and radiotherapy, one group was given the standard treatment (retinoic acid) plus immunotherapy (the antibody plus immune-boosting substances), while 113 similar patients received the standard treatment alone.

After two years, 66 percent of individuals in the immunotherapy group were living free of cancer compared to 46 percent in the standard treatment group. Overall survival improved significantly as well. The trial patient randomization was halted early because of the benefit seen, and all patients enrolled in the trial will receive immunotherapy plus standard treatment.

Yu noted that the two-year mark is especially important because past trials have shown that those neuroblastoma patients who live without disease for two years after a stem cell transplant will most likely be cured.

"This is the first time in many years that we have been able to improve the 'cure rate' for neuroblastoma patients," she said. "This new therapy can help us improve care and perhaps offer new hope to many patients and families."

Yu and her team conducted the early phase I and phase II trials at the General Clinical Research Center at UC San Diego Medical Center.

Other co-authors include Andrew Gilman, Carolinas Medical Centre; M. Fevzi Ozkaynak, New York Medical College; Susan Cohn, University of Chicago; John Maris, Children's Hospital of Philadelphia; Paul Sondel, University of Wisconsin; W. B. London, University of Florida; S. Kreissman, Duke University; H.X. Chen, National Cancer Institute; and K.K. Matthay, UCSD. Local patients were seen in San Diego at Rady Children's Hospital.

The Moores UCSD Cancer Center is one of the nation's 41 National Cancer Institute-designated Comprehensive Cancer Centers, combining research, clinical care and community outreach to advance the prevention, treatment and cure of cancer.

Steve Benowitz | EurekAlert!
Further information:
http://www.ucsd.edu
http://health.ucsd.edu/cancer

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>