Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immunotherapy effective against neuroblastoma in children

18.05.2009
New therapy improves chances of living disease-free with difficult-to-treat childhood cancer

A phase III study has shown that adding an antibody-based therapy that harnesses the body's immune system resulted in a 20 percent increase in the number of children living disease-free for at least two years with neuroblastoma.

Neuroblastoma, a hard-to-treat cancer arising from nervous system cells, is responsible for 15 percent of cancer-related deaths in children. The researchers reported their findings – the first to show that immunotherapy could be effective against childhood cancer – online May 14, 2009 on the American Society of Clinical Oncology website in advance of presentation June 2.

"This establishes a new standard of care for a traditionally very difficult cancer in children," said lead author Alice Yu, MD, PhD, professor of pediatric hematology/oncology at the University of California, San Diego School of Medicine and the Moores UCSD Cancer Center. "High-risk neuroblastoma has always been a frustrating cancer to treat because, despite aggressive therapy, it has a high relapse rate."

The therapy targets a specific glycan (a complex sugar chain found on the surface of cells) on neuroblastoma cells called GD2, which inhibit the immune system from killing cancer cells. The antibody – ch14.18 – binds to this glycan, enabling various types of immune cells to attack the cancer.

Neuroblastoma – in which the cancer cells arise from nerve cells in the neck, chest, or abdomen – is the most common cancer diagnosed in the first year of life. Approximately 650 new cases of neuroblastoma are diagnosed in this country every year, and about 40 percent of patients have high-risk neuroblastoma. These high-risk patients are usually treated with surgery, intensive chemotherapy with stem cell rescue (in which patients' adult stem cells, removed before treatment, are returned after chemotherapy to restore the blood and immune system), and radiation therapy. Still, only 30 percent of patients survive.

Yu and her colleagues compared both the percentage of patients who were still alive without experiencing a recurrence after two years as well as overall survival in two groups of 113 patients each. Patients began the trial when they were newly diagnosed with high-risk neuroblastoma. After conventional treatment with surgery, chemotherapy, stem cell rescue and radiotherapy, one group was given the standard treatment (retinoic acid) plus immunotherapy (the antibody plus immune-boosting substances), while 113 similar patients received the standard treatment alone.

After two years, 66 percent of individuals in the immunotherapy group were living free of cancer compared to 46 percent in the standard treatment group. Overall survival improved significantly as well. The trial patient randomization was halted early because of the benefit seen, and all patients enrolled in the trial will receive immunotherapy plus standard treatment.

Yu noted that the two-year mark is especially important because past trials have shown that those neuroblastoma patients who live without disease for two years after a stem cell transplant will most likely be cured.

"This is the first time in many years that we have been able to improve the 'cure rate' for neuroblastoma patients," she said. "This new therapy can help us improve care and perhaps offer new hope to many patients and families."

Yu and her team conducted the early phase I and phase II trials at the General Clinical Research Center at UC San Diego Medical Center.

Other co-authors include Andrew Gilman, Carolinas Medical Centre; M. Fevzi Ozkaynak, New York Medical College; Susan Cohn, University of Chicago; John Maris, Children's Hospital of Philadelphia; Paul Sondel, University of Wisconsin; W. B. London, University of Florida; S. Kreissman, Duke University; H.X. Chen, National Cancer Institute; and K.K. Matthay, UCSD. Local patients were seen in San Diego at Rady Children's Hospital.

The Moores UCSD Cancer Center is one of the nation's 41 National Cancer Institute-designated Comprehensive Cancer Centers, combining research, clinical care and community outreach to advance the prevention, treatment and cure of cancer.

Steve Benowitz | EurekAlert!
Further information:
http://www.ucsd.edu
http://health.ucsd.edu/cancer

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>