Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First immunological clue to why some H1N1 patients get very ill or die

16.12.2009
An international team of Canadian and Spanish scientists have found the first potential immunological clue of why some people develop severe pneumonia when infected by the pandemic H1N1 virus.

The study analyzed different levels of regulating molecules for 20 hospitalized patients, 15 outpatients and 15 control subjects in 10 Spanish hospitals during the first pandemic wave in July and August 2009.

Researchers from the Hospital Clinico Universitario de Valladolid in Spain and the University Health Network found high levels of a molecule called interleukin 17 in the blood of severe H1N1 patients, and low levels in patients with the mild form of the disease.

Interleukin 17 is produced by the body and is important in the normal regulation of white blood cells which fight infection and disease. In certain circumstances, the molecule becomes "out of control", leading to inflammation and autoimmune diseases. The research paper titled, "Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza" is published in the December issue of the Journal of Critical Care.

"In rare cases, the virus causes lung infections requiring patients to be treated in hospital. By targeting or blocking TH17 in the future, we could potentially reduce the amount of inflammation in the lungs and speed up recovery," says Dr. David Kelvin, the leader of the Canadian team, Head of the Experimental Therapeutics Division, Toronto General Hospital Research Institute, University Health Network and Professor of Immunology, University of Toronto. Dr. Kelvin added that the clinical applications of this work is still many years away.

Dr. Kelvin did note, however, that a test to determine who has high levels of the molecule is possible in the near future. "A diagnostic test could let us know early who is at risk for the severe form of this illness quickly," he said, adding that high levels would indicate a failure of the immune system to eliminate the virus, similar to what happened during the 1918 Spanish flu when huge numbers of deaths occurred due to a deadly influenza A virus strain of subtype H1N1.

Dr. Jesus Bermejo-Martin, the coordinator of the Spanish team, thinks that identifying drugs able to regulate the activity of IL-17 may provide alternative treatments for patients with severe H1N1.

About University Health Network:

University Health Network consists of Toronto General, Toronto Western and Princess Margaret Hospitals. The scope of research and complexity of cases at University Health Network has made it a national and international source for discovery, education and patient care. It has the largest hospital-based research program in Canada, with major research in cardiology, transplantation, infectious diseases, neurosciences, oncology, surgical innovation, and genomic medicine. The Toronto General Research Institute has more than 350 scientists, students and support staff, more than $65 million in external funding, and its staff is published in more than 600 publications a year. University Health Network is a research and teaching hospital affiliated with the University of Toronto.

Alex Radkewycz | EurekAlert!
Further information:
http://www.uhn.ca

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>