Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What the Immune System Reveals about Breast Cancer

16.06.2009
Researchers of Mainz University identify the prognostic significance of the immune system in breast tumors

Researchers working with Dr Marcus Schmidt in the Department of Obstetrics and Gynecology at the University Medical Center Mainz have unlocked the key to the immune system's significance in cases of breast cancer, thus identifying its long-neglected role in the prognosis of the disease.

Their research results, published in the renowned Cancer Research journal, show that patients with certain breast tumors have a better prognosis when more immune cells are present in the tumor. These results permitted the scientists to extend the "coordinate system" in case of breast tumors to include the immune system as the third important reference point for the prognosis of this disease, in addition to the long-established prognostic factors of estrogen receptor expression and proliferative activity (Cancer Research, 1 July 2008; Cancer Research, 1 April 2009).

In the past, physicians searched intensively for criteria and factors permitting a reliable conclusion on the prognosis for node-negative breast cancer, that is, where the axillary lymph nodes show no tumour invasion. Two factors were established during numerous studies: estrogen receptor expression and proliferative activity, i.e., the rate of tumor cell division. The more estrogen receptors were detected in a patient, the better the prognosis was. The more proliferative activity there was, i.e., the faster the cells divided, the poorer the prognosis. Whether the prognosis is good or poor depends on the instance of early distance metastases in the liver, lungs, and bones in the first five years.

"However, the system of the two coordinates 'estrogen receptor expression' and 'proliferative activity' was not sufficiently reliable in the prognosis of all tumors," explained Dr Marcus Schmidt, senior physician at the Department for Obstetrics and Gynecology in the University Medical Center of Johannes Gutenberg University Mainz. "Particularly puzzling was a group of tumors that did not generate any early metastases, despite a high rate of proliferation and low estrogen receptor levels - currently considered to be the criteria for a poor prognosis. This could not be explained with the knowledge at hand. Applying a third criterion - the immune system - we can now round out this somewhat incomplete picture of the prognosis for breast cancer to achieve a more conclusive one."

The scientists tracked the immune system using gene expression analysis. With this analysis, a large number of genes can be identified and characterized with respect to their activity in the tumor tissue. "Using this method, we can examine the development of more than 14,500 genes - i.e., their expression," explained Marcus Schmidt. "During these studies on the tissue of 200 patients, we came across a group of genes with which we were able to explain the currently inexplicably good prognosis in the case of a certain group of rapidly dividing tumors. Primarily, we were able to attribute these genes to immune system cells - B cells and T cells. The more of these immune cell transcripts were present, the better the prognosis was - particularly with tumors in which a poor prognosis was expected because of the high rate of proliferation."

To validate and confirm their findings, the researchers of Mainz University examined the data of two other patient groups whose gene expression data had been published and is therefore accessible. The results in both cases were the same as with the Mainz patient group. With this additional data, they had access to the tissue samples of a total of 788 patients. "For us, this confirms that the immune system plays a fundamental role in breast cancer prognosis, and its importance is comparable to that of the tumor cell division rate," explained Marcus Schmidt. "Our research work should consequently draw attention to the long-neglected role of the immune system in breast cancer, expanding on and complementing the currently known factors of estrogen receptor expression and proliferative activity."

In Marcus Schmidt's view, however, the significance of these findings goes beyond improved characterization and prognostic assessment in the case of node-negative breast tumors. For example, the observed protective effect of immune cells, which occur naturally in the tumor in any event, presents a clear case for using the favorable role of the immune system in breast cancer prognosis as additional therapy with inoculation strategies.

Marcus Schmidt, Daniel Böhm, Christian von Törne, Eric Steiner, Alexander Puhl, Henryk Pilch, Hans-Anton Lehr, Jan G. Hengstler, Heinz Kölbl and Mathias Gehrmann
The Humoral Immune System Has a Key Prognostic Impact in Node-Negative Breast Cancer
Cancer Research; 68: (13). July 1, 2008 (5405-13)
http://cancerres.aacrjournals.org/cgi/content/abstract/68/13/5405
Marcus Schmidt, Jan G. Hengstler, Christian von Thöme, Heinz Kölbl and Mathias C. Gehrmann
Coordinates in the Universe of Node-Negative Breast Cancer Revisited
Cancer Research; 69: (7). April 1, 2009 (2695-8)

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/
http://cancerres.aacrjournals.org/cgi/content/abstract/68/13/5405
http://cancerres.aacrjournals.org/cgi/content/abstract/69/7/2695

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>