Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Immune system protein could explain pancreatitis

There is now a clear target for the treatment of acute pancreatitis, according to researchers at Lund University in Sweden, who have discovered that a well-known protein plays a central role in the development of the disease. It is likely that the protein is also highly significant for other inflammatory diseases.

The research results have been published in the American journal Gastroenterology.

Excessive alcohol intake and gall stones are known risk factors for acute pancreatitis. However, as yet no explanation has been found for what actually happens in the body in cases of acute pancreatitis.

Current research shows that calcium-sensitive proteins found in the body, for example calcineurin, promote inflammation, but it is not known exactly how.

Henrik Thorlacius and Maria Gomez at the University’s Department of Clinical Sciences in Malmö have investigated this in more detail. The focus is on a family of proteins linked to calcineurin, called NFAT, the role of which in acute pancreatitis has not previously been studied.

“The protein has an unexpectedly major role in the development of inflammation in the pancreas. Now there is a clear target for the development of drugs and treatments”, says Henrik Thorlacius, Professor of Surgery at Lund University and a doctor at Skåne University Hospital.

In experiments on mice, the researchers found a number of links between NFAT and acute pancreatitis. NFAT, and especially the variant NFATc3, were found to regulate the activity of trypsinogen (a precursor form of the digestive enzyme trypsin), which can affect the risk of acute pancreatitis. The activation of NFATc3 was also found to encourage inflammation and tissue damage in the pancreas in various other ways.

“In our study, we saw that the aorta, spleen and lungs were also affected. The results therefore suggest that the NFAT protein plays a part in the development of inflammatory diseases on a more general level”, says Henrik Thorlacius.

The findings open up new opportunities for research on treatment and drugs, both for acute pancreatitis and for other acute inflammatory diseases, such as blood poisoning and inflammatory bowel disease.

“An effective drug needs to contain a substance that stops the activation of NFATc3 without producing serious side-effects”, says Professor Thorlacius.

The NFAT proteins function as transcription factors, which means that they can be bound to the body’s DNA and regulate the expression of specific genes in different cells. They have so far primarily been associated with immune cells.

Article title: ‘NFATc3 Regulates Trypsinogen Activation, Neutrophil Recruitment, and Tissue Damage in Acute Pancreatitis in Mice’

Published in: Gastroenterology

About acute pancreatitis
The pancreas forms various enzymes and hormones that are necessary for digestion and to keep sugar levels stable.

Pancreatitis can be either chronic or acute, and as yet no one has been able to explain the causes of the disease. High alcohol intake and gall stones are known risk factors.

Every year, one person in 1 000 in Sweden is affected by pancreatitis, corresponding to around 9 000 cases. Of these, 10–20 per cent fall seriously ill, with a risk of fatality. There are no effective drugs to treat the condition.

For more information
Henrik Thorlacius, Professor of Surgery at the Department of Clinical Sciences in Malmö, Lund University and doctor at Skåne University Hospital, +46 70 34 55 150,

Maria F. Gomez, Reader in Physiology at the Department of Clinical Sciences in Malmö, Lund University, +46 70 222 62 16,

Helga Ekdahl Heun | idw
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>