Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system protein could explain pancreatitis

31.08.2012
There is now a clear target for the treatment of acute pancreatitis, according to researchers at Lund University in Sweden, who have discovered that a well-known protein plays a central role in the development of the disease. It is likely that the protein is also highly significant for other inflammatory diseases.

The research results have been published in the American journal Gastroenterology.

Excessive alcohol intake and gall stones are known risk factors for acute pancreatitis. However, as yet no explanation has been found for what actually happens in the body in cases of acute pancreatitis.

Current research shows that calcium-sensitive proteins found in the body, for example calcineurin, promote inflammation, but it is not known exactly how.

Henrik Thorlacius and Maria Gomez at the University’s Department of Clinical Sciences in Malmö have investigated this in more detail. The focus is on a family of proteins linked to calcineurin, called NFAT, the role of which in acute pancreatitis has not previously been studied.

“The protein has an unexpectedly major role in the development of inflammation in the pancreas. Now there is a clear target for the development of drugs and treatments”, says Henrik Thorlacius, Professor of Surgery at Lund University and a doctor at Skåne University Hospital.

In experiments on mice, the researchers found a number of links between NFAT and acute pancreatitis. NFAT, and especially the variant NFATc3, were found to regulate the activity of trypsinogen (a precursor form of the digestive enzyme trypsin), which can affect the risk of acute pancreatitis. The activation of NFATc3 was also found to encourage inflammation and tissue damage in the pancreas in various other ways.

“In our study, we saw that the aorta, spleen and lungs were also affected. The results therefore suggest that the NFAT protein plays a part in the development of inflammatory diseases on a more general level”, says Henrik Thorlacius.

The findings open up new opportunities for research on treatment and drugs, both for acute pancreatitis and for other acute inflammatory diseases, such as blood poisoning and inflammatory bowel disease.

“An effective drug needs to contain a substance that stops the activation of NFATc3 without producing serious side-effects”, says Professor Thorlacius.

The NFAT proteins function as transcription factors, which means that they can be bound to the body’s DNA and regulate the expression of specific genes in different cells. They have so far primarily been associated with immune cells.

Publication
Article title: ‘NFATc3 Regulates Trypsinogen Activation, Neutrophil Recruitment, and Tissue Damage in Acute Pancreatitis in Mice’

Published in: Gastroenterology

About acute pancreatitis
The pancreas forms various enzymes and hormones that are necessary for digestion and to keep sugar levels stable.

Pancreatitis can be either chronic or acute, and as yet no one has been able to explain the causes of the disease. High alcohol intake and gall stones are known risk factors.

Every year, one person in 1 000 in Sweden is affected by pancreatitis, corresponding to around 9 000 cases. Of these, 10–20 per cent fall seriously ill, with a risk of fatality. There are no effective drugs to treat the condition.

For more information
Henrik Thorlacius, Professor of Surgery at the Department of Clinical Sciences in Malmö, Lund University and doctor at Skåne University Hospital, +46 70 34 55 150, henrik.thorlacius@med.lu.se

Maria F. Gomez, Reader in Physiology at the Department of Clinical Sciences in Malmö, Lund University, +46 70 222 62 16, maria.gomez@med.lu.se

Helga Ekdahl Heun | idw
Further information:
http://www.lu.se

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>