Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system 'atlas' will speed detection of kidney transplant

24.02.2009
Scientists at the Stanford University School of Medicine and Lucile Packard Children's Hospital have devised a new way to decode the immune signals that cause slow, chronic rejection of all transplanted kidneys.

They've created an immune-system "atlas" that will improve doctors' ability to monitor transplanted organs and shed light on the mechanisms of gradual, cumulative kidney malfunction after transplant.

"The reason chronic injury occurs in transplanted organs is really a mystery," said senior study author Minnie Sarwal, MD, PhD, professor of pediatrics at the School of Medicine and a nephrologist at Packard Children's Hospital. "Even patients who receive an organ from an identical twin develop chronic rejection."

The findings will be published online Feb. 23 in the Proceedings of the National Academy of Sciences.

Before an organ transplant, doctors check for compatibility between the donor's and recipient's immune systems, Sarwal said. They examine the genes encoding small proteins, called human leukocyte antigens, that label the exterior of every cell. These proteins are the immune system's main mechanism for distinguishing "self" from "non-self" tissues. Only identical twins have perfectly matched human leukocyte antigens; for other organ recipients, doctors use a donor with the closest match they can find. After transplant, an organ recipient receives strong drugs that reduce the body's ability to crank out antibodies — immune "search-and-destroy" markers — against the donated kidney.

But the fact that chronic organ rejection occurs even between twins suggests the immune system is doing more than keeping tabs on human leukocyte antigens.

The Stanford team set out to find what that was. The researchers devised a first-of-its-kind method to catalog every one of the antibodies attacking donated kidneys after transplant. They tracked evidence of all types of immune system attack by comprehensively comparing antibody levels in 18 kidney recipients before and after transplant. To do this, they melded two biological sleuthing systems, first comparing all proteins in the subjects' blood to an array of more than 5,000 human proteins, then running the results from that analysis through a genetic database that showed which blood proteins were antibodies designed to attack the donated kidney.

"This is pretty revolutionary," Sarwal said. "It opens the door to a lot of exciting work to personalize how we monitor these patients." The new findings will allow inexpensive, noninvasive blood tests that show whether a donated kidney is infected, undergoing acute rejection or accruing chronic injuries that could cause long-term malfunction, she said.

"An individual's antibody profile is a new aspect of human physiology that can now be surveyed in an unbiased way, the same way genes can," said co-senior author Atul Butte, MD, PhD, assistant professor of medical informatics and of pediatrics. "That's very exciting." Butte is also a member of the Stanford Cancer Center. Unlike genes, the body's antibodies change over time, a factor that could improve the effectiveness of personalized medicine, Butte said.

The team's raw data on antibody profiles is now publicly available to other scientists through the Gene Expression Omnibus database maintained by the National Center for Biotechnology Information, a division of the National Library of Medicine.

In addition to improving patient monitoring, the team's comprehensive list of anti-kidney antibodies will spur research on the mechanisms of chronic kidney rejection. For example, the study establishes for the first time what part of the kidney causes the largest immune response after transplant.

"To our great surprise, the most immunogenic region of the kidney is the renal pelvis," Sarwal said. The renal pelvis is the cavity deep inside the organ that collects urine and funnels it toward the bladder. The next-largest immune responses were observed at the cortex and glomerulus, regions of the kidney with large blood supplies and extensive exposure to the recipient's immune system. The next step in understanding chronic organ rejection will be to identify which specific anti-kidney antibodies are the most reliable harbingers of renal malfunction, Sarwal said.

"If we can correlate these antibodies with clinical events in the organ, we'll have the tools to extend the life of kidney transplants," Sarwal concluded.

Erin Digitale | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>