Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Immune system 'atlas' will speed detection of kidney transplant

Scientists at the Stanford University School of Medicine and Lucile Packard Children's Hospital have devised a new way to decode the immune signals that cause slow, chronic rejection of all transplanted kidneys.

They've created an immune-system "atlas" that will improve doctors' ability to monitor transplanted organs and shed light on the mechanisms of gradual, cumulative kidney malfunction after transplant.

"The reason chronic injury occurs in transplanted organs is really a mystery," said senior study author Minnie Sarwal, MD, PhD, professor of pediatrics at the School of Medicine and a nephrologist at Packard Children's Hospital. "Even patients who receive an organ from an identical twin develop chronic rejection."

The findings will be published online Feb. 23 in the Proceedings of the National Academy of Sciences.

Before an organ transplant, doctors check for compatibility between the donor's and recipient's immune systems, Sarwal said. They examine the genes encoding small proteins, called human leukocyte antigens, that label the exterior of every cell. These proteins are the immune system's main mechanism for distinguishing "self" from "non-self" tissues. Only identical twins have perfectly matched human leukocyte antigens; for other organ recipients, doctors use a donor with the closest match they can find. After transplant, an organ recipient receives strong drugs that reduce the body's ability to crank out antibodies — immune "search-and-destroy" markers — against the donated kidney.

But the fact that chronic organ rejection occurs even between twins suggests the immune system is doing more than keeping tabs on human leukocyte antigens.

The Stanford team set out to find what that was. The researchers devised a first-of-its-kind method to catalog every one of the antibodies attacking donated kidneys after transplant. They tracked evidence of all types of immune system attack by comprehensively comparing antibody levels in 18 kidney recipients before and after transplant. To do this, they melded two biological sleuthing systems, first comparing all proteins in the subjects' blood to an array of more than 5,000 human proteins, then running the results from that analysis through a genetic database that showed which blood proteins were antibodies designed to attack the donated kidney.

"This is pretty revolutionary," Sarwal said. "It opens the door to a lot of exciting work to personalize how we monitor these patients." The new findings will allow inexpensive, noninvasive blood tests that show whether a donated kidney is infected, undergoing acute rejection or accruing chronic injuries that could cause long-term malfunction, she said.

"An individual's antibody profile is a new aspect of human physiology that can now be surveyed in an unbiased way, the same way genes can," said co-senior author Atul Butte, MD, PhD, assistant professor of medical informatics and of pediatrics. "That's very exciting." Butte is also a member of the Stanford Cancer Center. Unlike genes, the body's antibodies change over time, a factor that could improve the effectiveness of personalized medicine, Butte said.

The team's raw data on antibody profiles is now publicly available to other scientists through the Gene Expression Omnibus database maintained by the National Center for Biotechnology Information, a division of the National Library of Medicine.

In addition to improving patient monitoring, the team's comprehensive list of anti-kidney antibodies will spur research on the mechanisms of chronic kidney rejection. For example, the study establishes for the first time what part of the kidney causes the largest immune response after transplant.

"To our great surprise, the most immunogenic region of the kidney is the renal pelvis," Sarwal said. The renal pelvis is the cavity deep inside the organ that collects urine and funnels it toward the bladder. The next-largest immune responses were observed at the cortex and glomerulus, regions of the kidney with large blood supplies and extensive exposure to the recipient's immune system. The next step in understanding chronic organ rejection will be to identify which specific anti-kidney antibodies are the most reliable harbingers of renal malfunction, Sarwal said.

"If we can correlate these antibodies with clinical events in the organ, we'll have the tools to extend the life of kidney transplants," Sarwal concluded.

Erin Digitale | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>