Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hypoglossal nerve stimulation increases airflow during sleep in obstructive sleep apnea

25.11.2011
Hypoglossal nerve stimulation (HGNS) produced marked dose-related increases in airflow in obstructive sleep apnea (OSA) patients without arousing them from sleep, according to a new study from the Johns Hopkins Sleep Disorders Center.

The study suggests the potential therapeutic efficacy of HGNS across a broad range of sleep apnea severity and offers an alternative to continuous positive airway pressure (CPAP), the current mainstay of treatment for moderate to severe OSA. The effectiveness of CPAP is often limited by poor patient adherence.

"With HGNS, airflow increased in all of our patients, and increased progressively with stimulus amplitude," according to Alan R. Schwartz, MD, medical director of the Sleep Center at Johns Hopkins Bayview Medical Center. "The increases in airflow we observed were of sufficient magnitude to eliminate inspiratory airflow limitation (IFL) in the majority of patients."

The findings were published online ahead of print publication in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.

The study, which was supported by device manufacturer Apnex Medical, Inc., enrolled 30 middle-aged patients with moderate and severe obstructive sleep apnea who were implanted with a novel HGNS system. The pacemaker-like device monitors breathing patterns and is activated during sleep to stimulate the hypoglossal nerve, which controls muscles in the upper airway.

During the study, current was increased stepwise during non-REM sleep. Frequency and pulse width were fixed. At each current level, stimulation was applied on alternating breaths so that responses in inspiratory airflow could be compared to adjacent unstimulated breaths, and maximal inspiratory airflow (VImax) and IFL were measured.

HGNS produced linear increases in VImax with increasing current. Mean VImax increased significantly from 215±21ml/s off stimulation to 509±37mL/s on stimulation. VImax increased in all patients, and IFL was abolished entirely in 17 (57%). Normal or near-normal levels of flow were achieved in all 30 patients.

"In our study, acute unilateral stimulation of the hypoglossal nerve during sleep in patients with obstructive sleep apnea resulted in progressive increases in inspiratory airflow with increasing stimulation intensity, and inspiratory flow limitation was completely eliminated in the majority of patients," said Dr. Schwartz. "Of note, inspiratory airflow returned to baseline levels on alternating unstimulated breaths, suggesting that HGNS has a direct effect on lingual muscles and airway patency without arousing patients from sleep."

The study had a few limitations. Esophageal manometry was not used to monitor inspiratory effort, and flow response was not measured in all body positions and sleep stages. In addition, the effects of chronic use of HGNS therapy were not assessed.

"Our findings extend previous findings on the effects of HGNS on airflow in obstructive sleep apnea by characterizing flow responses over a range of stimulus amplitudes and demonstrating greater increases in airflow," concluded Dr. Schwartz. "The magnitude of the increases in airflow we observed indicate that HGNS can provide substantial relief of upper airway obstruction during sleep in these patients across a wide range of disease severity."

About the American Journal of Respiratory Research and Critical Care Medicine:

With an impact factor of 10.191, the AJRRCM is a peer-reviewed journal published by the American Thoracic Society. It aims to publish the most innovative science and the highest quality reviews, practice guidelines and statements in the pulmonary, critical care and sleep-related fields.

Founded in 1905, the American Thoracic Society is the world's leading medical association dedicated to advancing pulmonary, critical care and sleep medicine. The Society's 15,000 members prevent and fight respiratory disease around the globe through research, education, patient care and advocacy.

Nathaniel Dunford | EurekAlert!
Further information:
http://www.thoracic.org

Further reports about: HGNS Hypoglossal Medical Wellness Medicine OSA Respiratory Thoracic VImax obstructive sleep apnea sleep

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>