Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hypoglossal nerve stimulation increases airflow during sleep in obstructive sleep apnea

25.11.2011
Hypoglossal nerve stimulation (HGNS) produced marked dose-related increases in airflow in obstructive sleep apnea (OSA) patients without arousing them from sleep, according to a new study from the Johns Hopkins Sleep Disorders Center.

The study suggests the potential therapeutic efficacy of HGNS across a broad range of sleep apnea severity and offers an alternative to continuous positive airway pressure (CPAP), the current mainstay of treatment for moderate to severe OSA. The effectiveness of CPAP is often limited by poor patient adherence.

"With HGNS, airflow increased in all of our patients, and increased progressively with stimulus amplitude," according to Alan R. Schwartz, MD, medical director of the Sleep Center at Johns Hopkins Bayview Medical Center. "The increases in airflow we observed were of sufficient magnitude to eliminate inspiratory airflow limitation (IFL) in the majority of patients."

The findings were published online ahead of print publication in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.

The study, which was supported by device manufacturer Apnex Medical, Inc., enrolled 30 middle-aged patients with moderate and severe obstructive sleep apnea who were implanted with a novel HGNS system. The pacemaker-like device monitors breathing patterns and is activated during sleep to stimulate the hypoglossal nerve, which controls muscles in the upper airway.

During the study, current was increased stepwise during non-REM sleep. Frequency and pulse width were fixed. At each current level, stimulation was applied on alternating breaths so that responses in inspiratory airflow could be compared to adjacent unstimulated breaths, and maximal inspiratory airflow (VImax) and IFL were measured.

HGNS produced linear increases in VImax with increasing current. Mean VImax increased significantly from 215±21ml/s off stimulation to 509±37mL/s on stimulation. VImax increased in all patients, and IFL was abolished entirely in 17 (57%). Normal or near-normal levels of flow were achieved in all 30 patients.

"In our study, acute unilateral stimulation of the hypoglossal nerve during sleep in patients with obstructive sleep apnea resulted in progressive increases in inspiratory airflow with increasing stimulation intensity, and inspiratory flow limitation was completely eliminated in the majority of patients," said Dr. Schwartz. "Of note, inspiratory airflow returned to baseline levels on alternating unstimulated breaths, suggesting that HGNS has a direct effect on lingual muscles and airway patency without arousing patients from sleep."

The study had a few limitations. Esophageal manometry was not used to monitor inspiratory effort, and flow response was not measured in all body positions and sleep stages. In addition, the effects of chronic use of HGNS therapy were not assessed.

"Our findings extend previous findings on the effects of HGNS on airflow in obstructive sleep apnea by characterizing flow responses over a range of stimulus amplitudes and demonstrating greater increases in airflow," concluded Dr. Schwartz. "The magnitude of the increases in airflow we observed indicate that HGNS can provide substantial relief of upper airway obstruction during sleep in these patients across a wide range of disease severity."

About the American Journal of Respiratory Research and Critical Care Medicine:

With an impact factor of 10.191, the AJRRCM is a peer-reviewed journal published by the American Thoracic Society. It aims to publish the most innovative science and the highest quality reviews, practice guidelines and statements in the pulmonary, critical care and sleep-related fields.

Founded in 1905, the American Thoracic Society is the world's leading medical association dedicated to advancing pulmonary, critical care and sleep medicine. The Society's 15,000 members prevent and fight respiratory disease around the globe through research, education, patient care and advocacy.

Nathaniel Dunford | EurekAlert!
Further information:
http://www.thoracic.org

Further reports about: HGNS Hypoglossal Medical Wellness Medicine OSA Respiratory Thoracic VImax obstructive sleep apnea sleep

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>