Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hyperactivity in brain may explain multiple symptoms of depression

28.02.2012
Electrical signals can't shut off, suggest UCLA researchers

Most of us know what it means when it's said that someone is depressed. But commonly, true clinical depression brings with it a number of other symptoms. These can include anxiety, poor attention and concentration, memory issues, and sleep disturbances.

Traditionally, depression researchers have sought to identify the individual brain areas responsible for causing these symptoms. But the combination of so many symptoms suggested to UCLA researchers that the multiple symptoms of depression may be linked to a malfunction involving brain networks — the connections that link different brain regions.

Now, for the first time, these UCLA researchers have shown that people with depression have increased connections among most brain areas. Indeed, their brains are widely hyperconnected. The report, published this week in the online journal PLoS One, sheds new light on the brain dysfunction that causes depression and its wide array of symptoms.

"The brain must be able to regulate its connections to function properly," said the study's first author, Dr. Andrew Leuchter, a professor of psychiatry at the Semel Institute for Neuroscience and Human Behavior at UCLA. "The brain must be able to first synchronize, and then later desynchronize, different areas in order to react, regulate mood, learn and solve problems."

The depressed brain, Leuchter said, maintains its ability to form functional connections but loses the ability to turn these connections off.

"This inability to control how brain areas work together may help explain some of the symptoms in depression," he said.

In the study, the largest of its kind, the researchers studied the functional connections of the brain in 121 adults diagnosed with major depressive disorder, or MDD. They measured the synchronization of electrical signals from the brain — brain waves — to study networks among the different brain regions.

While some previous studies have hinted at abnormal patterns of connections in MDD, the UCLA team used a new method called "weighted network analysis" to examine overall brain connections. They found that the depressed subjects showed increased synchronization across all frequencies of electrical activity, indicating dysfunction in many different brain networks.

Brain rhythms in some of these networks regulate the release of serotonin and other brain chemicals that help control mood, said Leuchter, who is also the director of UCLA's Laboratory of Brain, Behavior, and Pharmacology and chair of the UCLA Academic Senate.

"The area of the brain that showed the greatest degree of abnormal connections was the prefrontal cortex, which is heavily involved in regulating mood and solving problems," he said. "When brain systems lose their flexibility in controlling connections, they may not be able to adapt to change.

"So an important question is, to what extent do abnormal rhythms drive the abnormal brain chemistry that we see in depression? We have known for some time that antidepressant medications alter the electrical rhythms of the brain at the same time that levels of brain chemicals like serotonin are changing. It is possible that a primary effect of antidepressant treatment is to 'repair' the brain's electrical connections and that normalizing brain connectivity is a key step in recovery from depression. That will be the next step in our research."

Other authors of the study include Dr. Ian A. Cook, Aimee M. Hunter, Chaochao Cai and Steve Horvath, all of UCLA. Funding for the study was provided by the National Institutes of Health, Lilly Research Laboratories and Pfizer Pharmaceuticals. The authors report no conflict of interest.

To learn more, visit www.brain.ucla.edu.

The Semel Institute for Neuroscience and Human Behavior is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders. In addition to conducting fundamental research, the institute's faculty seeks to develop effective strategies for the prevention and treatment of neurological, psychiatric and behavioral disorder, including improvement in access to mental health services and the shaping of national health policy.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Mark Wheeler | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>