Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hope for better drugs to treat stroke and heart attacks

02.05.2014

An international team of researchers in cooperation with the University of Bonn has taken two "snapshots" of a receptor which are of critical importance for blood coagulation.

The scientists now hope to be able to develop novel drugs using these results. These include tailor-made blood-thinning substances for heart attack and stroke patients whose effects are reversible and better controllable than those of current therapies. The researchers are presenting their results in the renowned journal "Nature."


Crystal structure and function of the P2Y12 receptor: The receptor is shown as a yellow ribbon (bottom).

(c) Graphic: Katya Kadyshevskaya/Stevens Laboratory/The Scripps Research Institute

After a cut to the finger, blood platelets come into play: they adhere to one another and thus close the wound. The adenosine diphosphate receptor P2Y12, found on the surface of platelets, plays an important role in this essential mechanism. It belongs to the family of so-called G-protein-coupled receptors (GPCR); two American researchers were awarded the Nobel prize in 2012 for research involving these receptors.

"If adenosine diphosphate (ADP) binds to the receptor, signals are transmitted to the inside of the cell which will finally lead to platelet aggregation," said Prof. Dr. Christa Müller from the Pharma-Center of the University of Bonn. In this process, the receptor and its binding partner ADP fit together precisely like a lock and a key. "The ADP can be thought of as a key which unlocks the receptor (the “lock”) to allow the signal for platelet aggregation to pass," explains the pharmacist.

... more about:
»ADP »Nature »adenosine »attack »blood »drugs »receptor »snapshots »stroke

Better control through a reversible blockade

However, platelet aggregation is sometimes undesired. For example, in the case of a heart attack or a stroke aggregated platelets occlude important blood vessels. As a preventive medicine blood thinners are generally prescribed to such patients, in order to prohibit further damage due to occluded blood vessels.

Pills containing the drug clopidogrel, that must be initially activated in the liver, are of great importance, since it blocks the P2Y12 receptor and thus prevents platelet aggregation. Since clopidogrel is an irreversible inhibitor, only with the formation of new platelets after approximately one to two weeks, this effect subsides in the patients.

"An effective, direct, reversible blockade of the receptor would be desirable to be able to better control aggregation and prevent overdose," said Prof. Müller. Also, if a patient treated with clopidogrel meets with an accident, a drug which can quickly detach from the receptor would be advantageous. This would prevent the injured patient from hemorrhaging due to the previously administered blood thinner. Such drugs are being developed, but so far all of them appear to show unwanted side-effects.

Two "snapshots" show the mode of operation of the receptor

"To date, it has not been understood well how exactly the receptor works according to the lock-and-key principle," stated Prof. Müller. "However, this is an important precondition for developing such a reversible, highly effective and, at the same time well tolerated drug with few adverse effects, for the prevention of platelet aggregation."

In an international team under the direction of Chinese colleagues from Shanghai and together with US researchers from Bethesda and La Jolla, the pharmacist was able to take two "snapshots" of the receptor with the help of X-ray structural analysis: once in the "unlocked" state, when a suitable binding partner ensures signal transmission in the platelet. The other shot shows the P2Y12 receptor in the blocked – "locked" – state. This shot has recently been published online in a "Nature" publication.

Both publications will appear in the printed edition of "Nature" in direct succession. "Using these two images, we can now envisage how the receptor protein’s conformation is changed during unlocking," said Prof. Müller. This knowledge will also allow the design of new drugs, which selectively and reversibly block the receptor.

"However, further intensive research is needed until such new drugs will come onto the market," said the pharmacist from the University of Bonn. Since there are many receptors with very similar properties, the research into the P2Y12 receptor gives hope for other applications. Thus the related P2Y2 receptor is, for example, involved in the metastasis of tumor cells. "Here, too, new options for cancer research could arise," said the pharmacist with an optimistic view towards the future.

Publications
Agonist-bound structure of the human P2Y12 receptor, journal "Nature", DOI: 10.1038/nature13288
Structure of the human P2Y12 receptor in complex with an antithrombotic drug, journal "Nature", DOI: 10.1038/nature13083

Contact information:

Prof. Dr. Christa E. Müller
Pharmaceutical Institute
of the University of Bonn
Tel. 0228/732301
E-Mail: christa.mueller@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

Further reports about: ADP Nature adenosine attack blood drugs receptor snapshots stroke

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>