Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hope for better drugs to treat stroke and heart attacks

02.05.2014

An international team of researchers in cooperation with the University of Bonn has taken two "snapshots" of a receptor which are of critical importance for blood coagulation.

The scientists now hope to be able to develop novel drugs using these results. These include tailor-made blood-thinning substances for heart attack and stroke patients whose effects are reversible and better controllable than those of current therapies. The researchers are presenting their results in the renowned journal "Nature."


Crystal structure and function of the P2Y12 receptor: The receptor is shown as a yellow ribbon (bottom).

(c) Graphic: Katya Kadyshevskaya/Stevens Laboratory/The Scripps Research Institute

After a cut to the finger, blood platelets come into play: they adhere to one another and thus close the wound. The adenosine diphosphate receptor P2Y12, found on the surface of platelets, plays an important role in this essential mechanism. It belongs to the family of so-called G-protein-coupled receptors (GPCR); two American researchers were awarded the Nobel prize in 2012 for research involving these receptors.

"If adenosine diphosphate (ADP) binds to the receptor, signals are transmitted to the inside of the cell which will finally lead to platelet aggregation," said Prof. Dr. Christa Müller from the Pharma-Center of the University of Bonn. In this process, the receptor and its binding partner ADP fit together precisely like a lock and a key. "The ADP can be thought of as a key which unlocks the receptor (the “lock”) to allow the signal for platelet aggregation to pass," explains the pharmacist.

... more about:
»ADP »Nature »adenosine »attack »blood »drugs »receptor »snapshots »stroke

Better control through a reversible blockade

However, platelet aggregation is sometimes undesired. For example, in the case of a heart attack or a stroke aggregated platelets occlude important blood vessels. As a preventive medicine blood thinners are generally prescribed to such patients, in order to prohibit further damage due to occluded blood vessels.

Pills containing the drug clopidogrel, that must be initially activated in the liver, are of great importance, since it blocks the P2Y12 receptor and thus prevents platelet aggregation. Since clopidogrel is an irreversible inhibitor, only with the formation of new platelets after approximately one to two weeks, this effect subsides in the patients.

"An effective, direct, reversible blockade of the receptor would be desirable to be able to better control aggregation and prevent overdose," said Prof. Müller. Also, if a patient treated with clopidogrel meets with an accident, a drug which can quickly detach from the receptor would be advantageous. This would prevent the injured patient from hemorrhaging due to the previously administered blood thinner. Such drugs are being developed, but so far all of them appear to show unwanted side-effects.

Two "snapshots" show the mode of operation of the receptor

"To date, it has not been understood well how exactly the receptor works according to the lock-and-key principle," stated Prof. Müller. "However, this is an important precondition for developing such a reversible, highly effective and, at the same time well tolerated drug with few adverse effects, for the prevention of platelet aggregation."

In an international team under the direction of Chinese colleagues from Shanghai and together with US researchers from Bethesda and La Jolla, the pharmacist was able to take two "snapshots" of the receptor with the help of X-ray structural analysis: once in the "unlocked" state, when a suitable binding partner ensures signal transmission in the platelet. The other shot shows the P2Y12 receptor in the blocked – "locked" – state. This shot has recently been published online in a "Nature" publication.

Both publications will appear in the printed edition of "Nature" in direct succession. "Using these two images, we can now envisage how the receptor protein’s conformation is changed during unlocking," said Prof. Müller. This knowledge will also allow the design of new drugs, which selectively and reversibly block the receptor.

"However, further intensive research is needed until such new drugs will come onto the market," said the pharmacist from the University of Bonn. Since there are many receptors with very similar properties, the research into the P2Y12 receptor gives hope for other applications. Thus the related P2Y2 receptor is, for example, involved in the metastasis of tumor cells. "Here, too, new options for cancer research could arise," said the pharmacist with an optimistic view towards the future.

Publications
Agonist-bound structure of the human P2Y12 receptor, journal "Nature", DOI: 10.1038/nature13288
Structure of the human P2Y12 receptor in complex with an antithrombotic drug, journal "Nature", DOI: 10.1038/nature13083

Contact information:

Prof. Dr. Christa E. Müller
Pharmaceutical Institute
of the University of Bonn
Tel. 0228/732301
E-Mail: christa.mueller@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

Further reports about: ADP Nature adenosine attack blood drugs receptor snapshots stroke

More articles from Health and Medicine:

nachricht An experimental Alzheimer's drug reverses genetic changes thought to spur the disease
04.05.2016 | Rockefeller University

nachricht Research points to a new treatment for pancreatic cancer
04.05.2016 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>