Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hemorrhagic Fevers Can Be Caused by Body’s Antiviral Interferon Response

05.06.2014

Hemorrhagic fevers caused by Lassa, dengue and other viruses affect more than one million people annually and are often fatal, yet scientists have never understood why only some virus-infected people come down with the disease and others do not.

But now, virologists and immunologists at The Scripps Research Institute (TSRI) have found a major clue to the mystery of “hemorrhagic fever” syndromes. In findings reported this week in an Early Edition of the Proceedings of the National Academy of Sciences, the team showed that Interferon Type I (IFN-I) immune proteins are key drivers of a viral syndrome in mice that closely mimics these human hemorrhagic fevers.

“Blocking IFN-I signaling in certain genetic mouse strains completely prevented disease signs such as vascular leakage leading to death,” said TSRI Associate Professor of Immunology Roberto Baccala, who, with TSRI Professor Michael Oldstone, led this study.

While IFN-I proteins traditionally have been considered essential for an effective antiviral response and are still used to treat some chronic viral infections, the new study suggests that these proteins sometimes do much more harm than good—and that blocking them, or specific biological pathways they activate, might be a good therapeutic strategy against hemorrhagic fevers.

Striking Impact

The discovery arose from the team’s recent research with the New Zealand Black (NZB) mouse, an inbred laboratory strain whose overactive immune system leads, in midlife, to an autoimmune condition resembling lupus. Curious to see how a viral infection in early life would affect the mice, the team injected a group of the animals with a much-studied mouse virus called lymphocytic choriomeningitis virus (LCMV).

The parental LCMV Armstrong (Clone 53b) caused no symptoms and was quickly cleared by the NZB mice. But a variant (clone 13) that is efficient at infecting cells and causing a persistent infection—yet still causes only mild disease in most other mouse strains—had a strikingly different impact, showing serious signs of illness. Seven to eight days after infection, all the NZB mice that been injected with clone 13 had died.

Further examination revealed leaky blood vessels, fluid and immune virus-specific T cell infiltration into the lungs, decreased platelet counts and other pathological signs reminiscent of human hemorrhagic fevers.

As the scientists knew, LCMV is a member of the family of viruses that includes Lassa virus, which causes one of world’s most common hemorrhagic fevers—with a high fatality rate—in a subset of infected patients. “Lassa virus and LCMV infect the same cell type via the same cell-surface receptor,” Baccala said. Lassa virus infects hundreds of thousands of individuals annually, culminating in more than 20,000 deaths per year.

Most people infected with Lassa virus experience only mild illness, yet about 20 percent develop the hemorrhagic syndrome. Dengue virus manifests similarly, causing a hemorrhagic syndrome in only a subset of patients. The pathology seen in the LCMV clone 13-infected NZB mice suggested that they could serve as useful models of these human hemorrhagic syndromes, providing clues to how they develop and therapeutic stop-points for their treatment.

A New Target

Baccala and his colleagues soon found evidence that the hyperactivity of the NZB mouse antiviral CD8 cytotoxic T cell response is chiefly to blame for its fatal hemorrhagic disease. The researchers observed powerful CD8+ T cells in higher than normal numbers in affected NZB mouse tissues and a greater number of immune-stimulating molecules on the CD8+ cells’ surfaces. This CD8+ T cell overreaction damaged the endothelial cells that line pulmonary blood vessels, causing them to become leaky, which in turn led to the fatal buildup of fluid in the lungs.

IFN-I proteins historically have been known as the chief mobilizers of the protective antiviral response. When Baccala and his colleagues blocked IFN-I signaling, up to a day after infection, the CD8+ T cell response was virtually absent, and levels of clone 13 LCMV rose sharply in the NZB mice. Under these conditions, the mice showed no sign of disease and seemed able to tolerate the high viral load indefinitely—implying that the virus itself is virtually harmless when it doesn’t prompt an immune reaction.

“We are now working to determine whether we can target IFN-I itself to treat such conditions or whether we need to target the more specific signals, downstream of IFN-I, that cause pathology,” said Baccala.

In addition to Baccala and Oldstone, the co-authors of the study, “Type I interferon is a therapeutic target for virus-induced lethal vascular damage,” were Megan J. Welch, Rosana Gonzalez-Quintial, Kevin B. Walsh, John R. Teijaro, Anthony Nguyen, Cherie T. Ng, Brian Martin Sullivan, Alessandro Zarpellon, Zaverio M. Ruggeri, Juan Carlos de la Torre and Argyrios N. Theofilopoulos, all of TSRI. For more information on the paper, see http://www.pnas.org/content/early/2014/05/29/1408148111.abstract

The study was supported by the National Institutes of Health (grants AI099699, AI009484, CA127535, AR53228, AI077719 and HL42846).

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.

For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136
press@scripps.edu

Mika Ono | Eurek Alert!
Further information:
http://www.scripps.edu/news/press/2014/20140604baccala.html

Further reports about: CD8+ Interferon LCMV Scripps TSRI antiviral hemorrhagic immune lungs proteins vascular

More articles from Health and Medicine:

nachricht A study shows how the brain switches into memory mode
06.05.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht An experimental Alzheimer's drug reverses genetic changes thought to spur the disease
04.05.2016 | Rockefeller University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Regulator of death receptor discovered

06.05.2016 | Life Sciences

A study shows how the brain switches into memory mode

06.05.2016 | Health and Medicine

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>