Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hemorrhagic Fevers Can Be Caused by Body’s Antiviral Interferon Response

05.06.2014

Hemorrhagic fevers caused by Lassa, dengue and other viruses affect more than one million people annually and are often fatal, yet scientists have never understood why only some virus-infected people come down with the disease and others do not.

But now, virologists and immunologists at The Scripps Research Institute (TSRI) have found a major clue to the mystery of “hemorrhagic fever” syndromes. In findings reported this week in an Early Edition of the Proceedings of the National Academy of Sciences, the team showed that Interferon Type I (IFN-I) immune proteins are key drivers of a viral syndrome in mice that closely mimics these human hemorrhagic fevers.

“Blocking IFN-I signaling in certain genetic mouse strains completely prevented disease signs such as vascular leakage leading to death,” said TSRI Associate Professor of Immunology Roberto Baccala, who, with TSRI Professor Michael Oldstone, led this study.

While IFN-I proteins traditionally have been considered essential for an effective antiviral response and are still used to treat some chronic viral infections, the new study suggests that these proteins sometimes do much more harm than good—and that blocking them, or specific biological pathways they activate, might be a good therapeutic strategy against hemorrhagic fevers.

Striking Impact

The discovery arose from the team’s recent research with the New Zealand Black (NZB) mouse, an inbred laboratory strain whose overactive immune system leads, in midlife, to an autoimmune condition resembling lupus. Curious to see how a viral infection in early life would affect the mice, the team injected a group of the animals with a much-studied mouse virus called lymphocytic choriomeningitis virus (LCMV).

The parental LCMV Armstrong (Clone 53b) caused no symptoms and was quickly cleared by the NZB mice. But a variant (clone 13) that is efficient at infecting cells and causing a persistent infection—yet still causes only mild disease in most other mouse strains—had a strikingly different impact, showing serious signs of illness. Seven to eight days after infection, all the NZB mice that been injected with clone 13 had died.

Further examination revealed leaky blood vessels, fluid and immune virus-specific T cell infiltration into the lungs, decreased platelet counts and other pathological signs reminiscent of human hemorrhagic fevers.

As the scientists knew, LCMV is a member of the family of viruses that includes Lassa virus, which causes one of world’s most common hemorrhagic fevers—with a high fatality rate—in a subset of infected patients. “Lassa virus and LCMV infect the same cell type via the same cell-surface receptor,” Baccala said. Lassa virus infects hundreds of thousands of individuals annually, culminating in more than 20,000 deaths per year.

Most people infected with Lassa virus experience only mild illness, yet about 20 percent develop the hemorrhagic syndrome. Dengue virus manifests similarly, causing a hemorrhagic syndrome in only a subset of patients. The pathology seen in the LCMV clone 13-infected NZB mice suggested that they could serve as useful models of these human hemorrhagic syndromes, providing clues to how they develop and therapeutic stop-points for their treatment.

A New Target

Baccala and his colleagues soon found evidence that the hyperactivity of the NZB mouse antiviral CD8 cytotoxic T cell response is chiefly to blame for its fatal hemorrhagic disease. The researchers observed powerful CD8+ T cells in higher than normal numbers in affected NZB mouse tissues and a greater number of immune-stimulating molecules on the CD8+ cells’ surfaces. This CD8+ T cell overreaction damaged the endothelial cells that line pulmonary blood vessels, causing them to become leaky, which in turn led to the fatal buildup of fluid in the lungs.

IFN-I proteins historically have been known as the chief mobilizers of the protective antiviral response. When Baccala and his colleagues blocked IFN-I signaling, up to a day after infection, the CD8+ T cell response was virtually absent, and levels of clone 13 LCMV rose sharply in the NZB mice. Under these conditions, the mice showed no sign of disease and seemed able to tolerate the high viral load indefinitely—implying that the virus itself is virtually harmless when it doesn’t prompt an immune reaction.

“We are now working to determine whether we can target IFN-I itself to treat such conditions or whether we need to target the more specific signals, downstream of IFN-I, that cause pathology,” said Baccala.

In addition to Baccala and Oldstone, the co-authors of the study, “Type I interferon is a therapeutic target for virus-induced lethal vascular damage,” were Megan J. Welch, Rosana Gonzalez-Quintial, Kevin B. Walsh, John R. Teijaro, Anthony Nguyen, Cherie T. Ng, Brian Martin Sullivan, Alessandro Zarpellon, Zaverio M. Ruggeri, Juan Carlos de la Torre and Argyrios N. Theofilopoulos, all of TSRI. For more information on the paper, see http://www.pnas.org/content/early/2014/05/29/1408148111.abstract

The study was supported by the National Institutes of Health (grants AI099699, AI009484, CA127535, AR53228, AI077719 and HL42846).

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.

For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136
press@scripps.edu

Mika Ono | Eurek Alert!
Further information:
http://www.scripps.edu/news/press/2014/20140604baccala.html

Further reports about: CD8+ Interferon LCMV Scripps TSRI antiviral hemorrhagic immune lungs proteins vascular

More articles from Health and Medicine:

nachricht Using DNA origami to build nanodevices of the future
31.08.2015 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht An ounce of prevention: Research advances on 'scourge' of transplant wards
28.08.2015 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Siemens sells 18 industrial gas turbines to Thailand

01.09.2015 | Press release

An engineered surface unsticks sticky water droplets

01.09.2015 | Materials Sciences

New material science research may advance tech tools

01.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>