Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hemorrhagic Fevers Can Be Caused by Body’s Antiviral Interferon Response

05.06.2014

Hemorrhagic fevers caused by Lassa, dengue and other viruses affect more than one million people annually and are often fatal, yet scientists have never understood why only some virus-infected people come down with the disease and others do not.

But now, virologists and immunologists at The Scripps Research Institute (TSRI) have found a major clue to the mystery of “hemorrhagic fever” syndromes. In findings reported this week in an Early Edition of the Proceedings of the National Academy of Sciences, the team showed that Interferon Type I (IFN-I) immune proteins are key drivers of a viral syndrome in mice that closely mimics these human hemorrhagic fevers.

“Blocking IFN-I signaling in certain genetic mouse strains completely prevented disease signs such as vascular leakage leading to death,” said TSRI Associate Professor of Immunology Roberto Baccala, who, with TSRI Professor Michael Oldstone, led this study.

While IFN-I proteins traditionally have been considered essential for an effective antiviral response and are still used to treat some chronic viral infections, the new study suggests that these proteins sometimes do much more harm than good—and that blocking them, or specific biological pathways they activate, might be a good therapeutic strategy against hemorrhagic fevers.

Striking Impact

The discovery arose from the team’s recent research with the New Zealand Black (NZB) mouse, an inbred laboratory strain whose overactive immune system leads, in midlife, to an autoimmune condition resembling lupus. Curious to see how a viral infection in early life would affect the mice, the team injected a group of the animals with a much-studied mouse virus called lymphocytic choriomeningitis virus (LCMV).

The parental LCMV Armstrong (Clone 53b) caused no symptoms and was quickly cleared by the NZB mice. But a variant (clone 13) that is efficient at infecting cells and causing a persistent infection—yet still causes only mild disease in most other mouse strains—had a strikingly different impact, showing serious signs of illness. Seven to eight days after infection, all the NZB mice that been injected with clone 13 had died.

Further examination revealed leaky blood vessels, fluid and immune virus-specific T cell infiltration into the lungs, decreased platelet counts and other pathological signs reminiscent of human hemorrhagic fevers.

As the scientists knew, LCMV is a member of the family of viruses that includes Lassa virus, which causes one of world’s most common hemorrhagic fevers—with a high fatality rate—in a subset of infected patients. “Lassa virus and LCMV infect the same cell type via the same cell-surface receptor,” Baccala said. Lassa virus infects hundreds of thousands of individuals annually, culminating in more than 20,000 deaths per year.

Most people infected with Lassa virus experience only mild illness, yet about 20 percent develop the hemorrhagic syndrome. Dengue virus manifests similarly, causing a hemorrhagic syndrome in only a subset of patients. The pathology seen in the LCMV clone 13-infected NZB mice suggested that they could serve as useful models of these human hemorrhagic syndromes, providing clues to how they develop and therapeutic stop-points for their treatment.

A New Target

Baccala and his colleagues soon found evidence that the hyperactivity of the NZB mouse antiviral CD8 cytotoxic T cell response is chiefly to blame for its fatal hemorrhagic disease. The researchers observed powerful CD8+ T cells in higher than normal numbers in affected NZB mouse tissues and a greater number of immune-stimulating molecules on the CD8+ cells’ surfaces. This CD8+ T cell overreaction damaged the endothelial cells that line pulmonary blood vessels, causing them to become leaky, which in turn led to the fatal buildup of fluid in the lungs.

IFN-I proteins historically have been known as the chief mobilizers of the protective antiviral response. When Baccala and his colleagues blocked IFN-I signaling, up to a day after infection, the CD8+ T cell response was virtually absent, and levels of clone 13 LCMV rose sharply in the NZB mice. Under these conditions, the mice showed no sign of disease and seemed able to tolerate the high viral load indefinitely—implying that the virus itself is virtually harmless when it doesn’t prompt an immune reaction.

“We are now working to determine whether we can target IFN-I itself to treat such conditions or whether we need to target the more specific signals, downstream of IFN-I, that cause pathology,” said Baccala.

In addition to Baccala and Oldstone, the co-authors of the study, “Type I interferon is a therapeutic target for virus-induced lethal vascular damage,” were Megan J. Welch, Rosana Gonzalez-Quintial, Kevin B. Walsh, John R. Teijaro, Anthony Nguyen, Cherie T. Ng, Brian Martin Sullivan, Alessandro Zarpellon, Zaverio M. Ruggeri, Juan Carlos de la Torre and Argyrios N. Theofilopoulos, all of TSRI. For more information on the paper, see http://www.pnas.org/content/early/2014/05/29/1408148111.abstract

The study was supported by the National Institutes of Health (grants AI099699, AI009484, CA127535, AR53228, AI077719 and HL42846).

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.

For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136
press@scripps.edu

Mika Ono | Eurek Alert!
Further information:
http://www.scripps.edu/news/press/2014/20140604baccala.html

Further reports about: CD8+ Interferon LCMV Scripps TSRI antiviral hemorrhagic immune lungs proteins vascular

More articles from Health and Medicine:

nachricht Exploring a new frontier of cyber-physical systems: The human body
18.05.2015 | National Science Foundation

nachricht Soft-tissue engineering for hard-working cartilage
18.05.2015 | Technische Universitaet Muenchen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>