Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heavy metal paradox could point toward new therapy for Lou Gehrig's disease

01.12.2009
New discoveries have been made about how an elevated level of lead, which is a neurotoxic heavy metal, can slow the progression of amyotrophic lateral sclerosis, or Lou Gehrig's disease – findings that could point the way to a new type of therapy.

The results surprised researchers, since lead is also a known risk factor for ALS. This paradox is still not fully understood, and at this point would not form the basis for a therapy, as lead is toxic for the nervous system. But scientists say the phenomenon may lead to promising alternative approaches to the gene therapies that are now a focus of study.

The research was just published in Neurobiology of Disease, a professional journal, by researchers from the Instituto Clemente Estable and the University of the Republic in Montevideo, Uruguay, and at Oregon State University. The research has been supported by the National Institutes of Health.

"We know that environmental exposure to lead is a risk factor for ALS," said Joseph Beckman, holder of the Ava Helen Pauling Chair in the Linus Pauling Institute and director of the Environmental Health Sciences Center at OSU. "That's why it's so surprising that, according to studies done with laboratory animals, higher levels of lead appear to significantly reduce motor neuron loss and progression of ALS."

Research will continue to explore the underlying mechanisms that may be causing this, Beckman said. But the findings also raise immediate questions about the wisdom of chelation therapy in efforts to treat ALS, which many people have tried despite no evidence that it works. Chelation therapy tries to remove heavy metals from the body, including lead.

"Many people have spent thousands of dollars on chelation therapy to treat ALS, despite a lack of scientific evidence that heavy metals are causing the disease," Beckman said. "These findings about the potential protective mechanism of lead now raise concerns about the rationale for chelation therapy in treating ALS."

ALS is a progressive, fatal neurodegenerative disease that causes muscle weakness and atrophy throughout the body. There is no known cure, and it affects about 2-3 out of every 100,000 people each year.

According to Beckman, some of the findings about the role of lead in this disease evolved out of collaborative research OSU is doing with universities in Uruguay, where significant numbers of children from impoverished families are suffering from lead poisoning caused by setting up camps over abandoned lead factories near Montevideo.

"In this area there are huge problems with lead poisoning, mostly in children," Beckman said. "People are being exposed through their water, food, other environmental sources, and we've worked there for a number of years to learn more about the neurotoxicity of lead exposure."

Lead appears to have some interaction with astrocytes, Beckman said, a special type of cell that is believed to influence the spread of ALS. Astrocytes are a major component of brain cells and, in healthy systems, help to support neurons, defend them against infection and injury and remove neurons when they become damaged.

This delicate process, however, may get disrupted in ALS, at which point astrocytes are believed to play a role in causing inappropriate motor neuron death.

"These systems are very carefully balanced and many factors have to work together," Beckman said. "The proper functioning of astrocytes is essential to life, but their dysfunction may lead to disease. We think that lead somehow is modulating the neuroinflammatory actions of astrocytes and, in the case of ALS, helping to shift their balance back to one of protection, rather than damage."

When that happens, researchers say, it appears that astrocytes can stimulate the production of "vascular endothelial growth factor," which in turn protects motor neurons. Researchers around the world see increases in this growth factor as a possible way to help treat ALS, and most work is now focused on gene therapies to accomplish that. More research is necessary to determine the mechanisms by which lead has this protective effect, which may help to identify pharmacological targets for the disease.

The levels of lead that were therapeutic in the mice have toxic risk in adult humans, the researchers pointed out. However, as more is learned about how lead is affecting ALS, alternatives to lead might be found to accomplish the same goal.

"Available evidence supports the view that astrocytes are key targets of lead and respond to it by inducing neuroprotective pathways," the researchers wrote in their report. "Our results suggest that lead activates a novel pathway able to reduce neuroinflammation and slow neurodegeneration in ALS."

Joe Beckman | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>