Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hand has role in how we see objects in space

02.02.2010
We know exactly where an object is when we say it is “within the reach of our hand.” But if we don’t have a hand, can we still see the object just where it is?

Apparently not, say researchers at the Hebrew University of Jerusalem and Hadassah Hospital-Mount Scopus. The space within reach of our hands — where actions such as grasping and touching occur — is known as the “action space.”

Research has shown that visual information in this area is organized in hand-centered coordinates — in other words, the representation of objects in the human brain depends on their spatial position with respect to the hand.

According to new research published in Psychological Science, a journal of the Association for Psychological Science, amputation of the hand results in distorted visuospatial perception of the action space. The article was written by neuroscientists Dr. Tamar R. Makin, Meytal Wilf and Dr. Ehud Zohary of the Alexander Silberman Institute of Life Sciences at the Hebrew University of Jerusalem along with Dr. Isabella Schwartz of Hadassah Mount Scopus Hospital in Jerusalem.

They sought to investigate how hand amputations affect visuospatial perception in near space. Volunteers with either left- or right-hand amputations participated in this experiment. They were instructed to look at a central cross on a screen while two white squares were briefly shown to the left and right side of the cross. The volunteers had to indicate which of the squares was farther away from the cross.

The results reveal that hand amputations affect visuospatial perception. When the right square was slightly farther away from the center, participants with right-hand amputations tended to perceive it as being at the same distance from the center as the left square; this suggests that these volunteers underestimated the distance of the right square relative to the left. Conversely, when the left square was farther away, left-hand amputees perceived both squares as being equally far away from the center — these participants underestimated the left side of near space.

Interestingly, when the volunteers were seated farther away from the screen, they were more accurate in judging the distances, indicating that hand amputations may only affect perception of the space close to the body.

The findings suggest that losing a hand may shrink the action space on the amputated side, leading to permanent distortions in spatial perception. According to the researchers, “This shows that the possibility for action in near space shapes our perception — the space near our hands is really special, and our ability to move in that space affects how we perceive it.”

The researchers note that these results have implications for spatial hemineglect — a condition (often following brain injury) in which the patient cannot perceive objects on one side of space. This condition is very often associated with paralysis of the hand in the neglected side, which, based on the current study, might exasperate the perceptual neglect.

The authors suggest that, based on their findings, “current rehabilitation approaches that emphasize action on the affected side may reverse this process.” For example, encouraging the use of the affected hand or by providing visual feedback (through prism adaptation or mirrors) may help overcome hemineglect by increasing the size of the action space on the affected side.

For further information: Dept. of Media Relations, the Hebrew University,

Tel: 02-588-2875. Orit Sulitzeanu, Hebrew University spokesperson, Tel: 02-5882811

Orit Sulitzeanu | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>