Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hand has role in how we see objects in space

02.02.2010
We know exactly where an object is when we say it is “within the reach of our hand.” But if we don’t have a hand, can we still see the object just where it is?

Apparently not, say researchers at the Hebrew University of Jerusalem and Hadassah Hospital-Mount Scopus. The space within reach of our hands — where actions such as grasping and touching occur — is known as the “action space.”

Research has shown that visual information in this area is organized in hand-centered coordinates — in other words, the representation of objects in the human brain depends on their spatial position with respect to the hand.

According to new research published in Psychological Science, a journal of the Association for Psychological Science, amputation of the hand results in distorted visuospatial perception of the action space. The article was written by neuroscientists Dr. Tamar R. Makin, Meytal Wilf and Dr. Ehud Zohary of the Alexander Silberman Institute of Life Sciences at the Hebrew University of Jerusalem along with Dr. Isabella Schwartz of Hadassah Mount Scopus Hospital in Jerusalem.

They sought to investigate how hand amputations affect visuospatial perception in near space. Volunteers with either left- or right-hand amputations participated in this experiment. They were instructed to look at a central cross on a screen while two white squares were briefly shown to the left and right side of the cross. The volunteers had to indicate which of the squares was farther away from the cross.

The results reveal that hand amputations affect visuospatial perception. When the right square was slightly farther away from the center, participants with right-hand amputations tended to perceive it as being at the same distance from the center as the left square; this suggests that these volunteers underestimated the distance of the right square relative to the left. Conversely, when the left square was farther away, left-hand amputees perceived both squares as being equally far away from the center — these participants underestimated the left side of near space.

Interestingly, when the volunteers were seated farther away from the screen, they were more accurate in judging the distances, indicating that hand amputations may only affect perception of the space close to the body.

The findings suggest that losing a hand may shrink the action space on the amputated side, leading to permanent distortions in spatial perception. According to the researchers, “This shows that the possibility for action in near space shapes our perception — the space near our hands is really special, and our ability to move in that space affects how we perceive it.”

The researchers note that these results have implications for spatial hemineglect — a condition (often following brain injury) in which the patient cannot perceive objects on one side of space. This condition is very often associated with paralysis of the hand in the neglected side, which, based on the current study, might exasperate the perceptual neglect.

The authors suggest that, based on their findings, “current rehabilitation approaches that emphasize action on the affected side may reverse this process.” For example, encouraging the use of the affected hand or by providing visual feedback (through prism adaptation or mirrors) may help overcome hemineglect by increasing the size of the action space on the affected side.

For further information: Dept. of Media Relations, the Hebrew University,

Tel: 02-588-2875. Orit Sulitzeanu, Hebrew University spokesperson, Tel: 02-5882811

Orit Sulitzeanu | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>