Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth factor responsible for triggering hair follicle generation during wound healing identified

03.06.2013
Penn Medicine study highlights interplay between immune system and tissue regeneration

Researchers in the Perelman School of Medicine at the University of Pennsylvania have determined the role of a key growth factor, found in skin cells of limited quantities in humans, which helps hair follicles form and regenerate during the wound healing process.


Researchers in the Perelman School of Medicine at the University of Pennsylvania have determined the role of a key growth factor, found in skin cells of limited quantities in humans, that helps hair follicles form and regenerate during the wound healing process. This growth factor, Fgf9, is initially secreted from gamma delta T cells, an unconventional, rare subset of T cells involved in the immune response. Once released, Fgf9 serves as the catalyst for a signal sent via the dermal Wnt pathway. The signal prompts further expression of Fgf9 in structural cells called fibroblasts, and adds to the generation of new hair follicles. Researchers believe that this growth factor could be used therapeutically for people with various hair and scalp disorders. The study appears in an advance online publication of Nature Medicine.

Credit: George Cotsarelis and Elsa Treffeisen/Penn Medicine

When this growth factor, called Fgf9, was overexpressed in a mouse model, there was a two- to three-fold increase in the number of new hair follicles produced. Researchers believe that this growth factor could be used therapeutically for people with various hair and scalp disorders. The study appears in an advance online publication of Nature Medicine.

"The findings help explain why humans don't regenerate their hair after wounding," said senior author George Cotsarelis, MD, professor and chair of Dermatology. "The study also points us to a way to treat wounds and grow hair."

Following up on earlier work, which showed that increased signaling from the Wnt pathway doubled the number of new hair follicles, the Penn team looked further upstream in the pathway and identified an important cascade of signals that prompt further expression, as well as perpetuate and amplify signals sent during a crucial phase of hair-follicle regeneration.

Fgf9 is initially secreted from gamma delta T cells, an unconventional, rare subset of T cells involved in the immune response. Once released, Fgf9 serves as the catalyst for a signal sent via the dermal Wnt pathway. The signal prompts further expression of Fgf9 in structural cells called fibroblasts, and adds to the generation of new hair follicles.

When a wound occurs in an adult person, hair follicle growth is blocked and the skin heals with a scar. However, hair does regenerate to a great extent in the wound-healing process in mice. The team compared how the process works in adult mice versus humans. Humans have low numbers of gamma delta T cells in their skin compared to mice, and this may explain why human skin scars but does not regenerate hair follicles.

In adult mice, the amount of Fgf9 secreted modulates hair-follicle regeneration after wounding. When Fgf9 was reduced, there was a decrease in wound-induced hair follicle growth. Conversely, when Fgf9 was increased, there was a two- to three-fold increase in the number of new hair follicles, equal to the amount seen in the mice expressing Wnt. Importantly, when the investigators added Fgf9 back to the wounds that do not normally regenerate, FGF9 triggered the molecular cascade of events necessary for skin and hair regeneration; thus, leaving the door open for using Fgf9 to treat wounds and hair loss in people.

The Penn team suggests that, given the differences in skin development and regeneration in response to wounding, treatments intended to compensate for the lack of Fgf9 may be most effective if timed with a wounding response. "Testing activators of Fgf9 or Wnt pathways during the wound healing process may be warranted," they stated.

The study was funded by the National Institutes of Health (R01AR46837, P30AR057217, RO1AR055309, R01HL105732, T32AR007465), the Edwin and Fannie Gray Hall Center for Human Appearance at Penn Medicine, and The Dermatology Foundation.

Additional collaborators on the research include co-lead authors Denise Gay and Ohsang Kwon, Zhikun Zhang, Michelle Spata, Maksim V Plikus, Phillip D. Holler, Zaixin Yang, Elsa Treffeisen, Arben Nace, X Zhang, Sheena Baratono and Sarah E. Millar from Penn's Department of Dermatology, along with collaborators from New York University Langone Medical Center (Mayumi Ito), Seoul National University College of Medicine, Chungnam National University in Daejeon, Korea, Texas A&M University Health Science Center, and Washington University School of Medicine.

Editor's Note:

Cotsarelis, Ito and Kwon are listed as inventors on patent applications related to hair-follicle neogenesis, Wnt and FGF9, which are owned by the University of Pennsylvania. Cotsarelis also serves on the scientific advisory board and has equity in Follica, a start-up company that has licensed related patents from the University of Pennsylvania starting in 2007. Cotsarelis was also a co-founder of Follica.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Kim Menard | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>