Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Google Earth typhoid maps reveal secrets of disease outbreaks

17.10.2011
In the mid-nineteenth century, John Snow mapped cases of cholera in Soho, London, and traced the source of the outbreak to a contaminated water pump.

Now, in a twenty-first century equivalent, scientists funded by the Wellcome Trust working in Kathmandu, Nepal, have combined the latest in gene sequencing technology and global positioning system (GPS) case localisation to map the spread of typhoid and trace its source.


These are Google Earth maps of the study site showing locations of the residences of confirmed S. Typhi infections, S. Typhi genotype and the 42 functional water spouts including the three water-sampling sites (labelled 1, 2 and 3). (A) All 431 culture confirmed S. Typhi infections from the 4-year study period. (B) Culture confirmed S. Typhi infections occurring in a concentrated one km2 cluster to the west of the hospital (shaded in A). Credit: Image courtesy of Stephen Baker

Typhoid fever is caused by two bacteria – Salmonella typhi and Salmonella paratyphi. Both of these bacteria are found in Kathmandu and they usually spread through water or food contaminated with faeces. Symptoms of the disease include fever, abdominal pain and vomiting.

Recent advances in DNA sequencing have allowed scientists to accurately track the spread of some diseases by measuring mutations in the pathogen's DNA when the DNA replicates.

However, tracing the spread of typhoid has proved challenging as these mutations are small in number and not detectable by most techniques in use.

Tracing outbreaks of typhoid in Kathmandu also carries its own problem: street names are not used in Nepal, so capturing the addresses of typhoid cases – and hence accurately mapping the outbreaks – has proved challenging to health workers.

In research published today in the journal Open Biology, scientists at the Wellcome Trust Major Overseas Programme in Vietnam and the Oxford University Clinical Research Units in Kathmandu, Nepal, and Ho Chi Minh City, Vietnam, have found a way to accurately map typhoid outbreaks in the city. Their research combines DNA sequencing technology and GPS signalling, and maps the data onto Google Earth.

"Until now, it has been extremely difficult to study how organisms such as the typhoid-causing bacteria evolve and spread at a local level," explains Dr Stephen Baker from the Oxford University Clinical Research Unit in Vietnam. "Without this information, our ability to understand the transmission of these diseases has been significantly hampered. Now, advances in technology have allowed us for the first time to create accurate geographical and genetic maps of the spread of typhoid and trace it back to its sources."

To capture the information, health workers would visit a patient's home and use GPS to capture the exact location. They would also take a blood sample from the hospitalised patient to isolate the organism and to allow analysis of the typhoid strain's genotype – its genetic make-up. This genotyping used sequencing technology able to identify single changes in the 'letters' of DNA – the A, C, T and Gs that make up the code.

The researchers found extensive clustering of typhoid infections in particular locations. Yet, perhaps counter-intuitively for a disease that spreads amongst humans, this clustering was unrelated to the density of the local population. In fact, the study showed that people living near to water spouts, for whom these provide their main source of water, and people living at a lower elevation are at substantially greatest risk of contracting the disease.

Typhoid incidence is likely to be associated with faecal contamination of ground water during the monsoon. As S. paratyphi A (a strain of S. paratyphi found in Nepal) appeared to spread downstream from the main focal point, this would put people living in areas with low elevation at higher risk. These two variables, elevation and water spout proximity, are likely to be interconnected, as the water spouts are more common in low lying areas.

The research has also shed light on the role of asymptomatic carriers of the disease in the spread of typhoid. As these carriers do not show symptoms, they are likely to be unaware of their infection and can unwittingly spread the disease. The most famous of such cases was a cook in New York in the early twentieth century, nicknamed 'Typhoid Mary', who is believed to have spread the disease to dozens of people.

If the disease was spreading within a household due to direct transmission – either from an asymptomatic carrier or someone with symptomatic, acute disease, the researchers should be able to isolate the same genotype from a number of individuals in the same household. In fact, the variation of genotypes was more or less random, suggesting that the disease infrequently spreads from asymptomatic carriers. Rather, infections are transmitted predominantly through the environment – for example, through the water source.

Dr Baker adds: "Improvements in infrastructure are fundamental to the control and elimination of typhoid. Poor water quality, sanitary conditions and the presence of carriers mean that the organisms will persist in the community long after the limited window of immunity given by the current vaccine. Without integrating improvements in infrastructure alongside other control measures such as diagnosis, treatment and vaccination, it is unlikely that typhoid can be adequately controlled in places like Kathmandu in the long-term."

Combating infectious diseases is one the strategic priorities of the Wellcome Trust. Much of this work is carried out at a local level in regions where disease is endemic. This includes several major overseas programmes, including the Wellcome Trust Major Overseas Programme in Vietnam.

Commenting on the research, Dr Jimmy Whitworth, Head of International Activities at the Wellcome Trust, said: "Just as John Snow's pioneering cholera maps of the nineteenth century showed that poor sanitation leading to contaminated water was spreading disease, this study, which combines accurate mapping with the latest in genotyping technology, further reinforces the importance of improving the quality of water supplies and infrastructure for sanitation if we are to seriously tackle diseases such as typhoid."

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>