Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy and stem cells save limb

10.12.2009
Blood vessel blockage, a common condition in old age or diabetes, leads to low blood flow and results in low oxygen, which can kill cells and tissues. Such blockages can require amputation resulting in loss of limbs.

Now, using mice as their model, researchers at Johns Hopkins have developed therapies that increase blood flow, improve movement and decrease tissue death and the need for amputation. The findings, published online last week in the early edition of the Proceedings of the National Academy of Sciences, hold promise for developing clinical therapies.

"In a young, healthy individual, hypoxia — low oxygen levels — triggers the body to make factors that help coordinate the growth of new blood vessels but this process doesn't work as well as we age," says Gregg Semenza, M.D., Ph.D., professor of pediatrics and genetic medicine and director of the vascular biology program at the Johns Hopkins Institute for Cell Engineering. "Now, with the help of gene therapy and stem cells we can help reactivate the body's response to hypoxia and save limbs."

Previously, Semenza's team generated a virus that carries the gene encoding an active form of the HIF-1 protein, which turns on genes necessary for building new blood vessels. When injected into the hind legs of otherwise healthy mice and rabbits that had been treated to reduce blood flow, the HIF-1 virus treatment partially restored blood flow.

People with diabetes have a 40 times higher risk of losing a limb to amputation, says Semenza. To find out if HIF-1 gene therapy could improve blood flow in a diabetic animal, the team then tested the same virus in diabetic and non-diabetic mice that had blood flow cut off to one hind leg. Twenty-one days after treatment, the HIF-1 virus-treated mice had 85 percent recovery of blood flow compared with 24 percent in the mock-treated mice. And, treated, diabetic mice had much less tissue damage compared to the untreated diabetic mice. These results were reported in the Nov. 3 issue of the Proceedings of the National Academy of Sciences.

In the current study, the team asked if the same gene therapy treatment could improve reduced blood flow associated with advanced age. Comparing 13 month old mice to 3 month old mice, blocking the femoral artery in the hind leg causes all older mice to lose their legs while only about a third of younger mice have to lose their legs. The research team treated young and old mice with the HIF-1 virus and examined blood flow and tissue health. They found that while treatment improved young mice, it did not make a noticeable difference in the older mice.

But, it was known that when HIF-1 normally activates signals in the body to build new vessels, one of the many types of cells recruited to the site of new vessel growth is a population of stem cells from the bone marrow, which are called bone marrow-derived angiogenic cells. So the team isolated these cells from mice and grew them under special conditions that would turn on HIF-1 in these cells.

When the researchers treated the mice with both the HIF-1 virus and simultaneously injected bone marrow-derived angiogenic cells, treated, older mice were less likely to lose their legs compared to their untreated counterparts.

Further study of these mice showed that activating HIF-1 in the cells appeared to turn on a number of genes that help these cells not only home to the ischemic limb, but to stay there once they arrive. To figure out how the cells stay where they're needed, the research team built a tiny microfluidic chamber and tested the cells' ability to stay stuck with fluid flowing around them at rates mimicking the flow of blood through vessels in the body. They found that cells under low oxygen conditions were better able to stay stuck only if those same cells had HIF-1 turned on.

"Our results are promising because they show that a combination of gene and cell therapy can improve the outcome in the case of critical limb ischemia associated with aging or diabetes," says Semenza. "And that's critical for bringing such treatment to the clinic."

Audrey Huang | EurekAlert!
Further information:
http://www.hopkins-ice.org/
http://www.pnas.org/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>