Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene expression test identifies low-risk thyroid nodules

26.06.2012
Penn Medicine editorial suggests 25,000 unnecessary surgeries can be avoided

A new test can be used to identify low-risk thyroid nodules, reducing unnecessary surgeries for people with thyroid nodules that have indeterminate results after biopsy. The results of the multi-center trial, which includes researchers from the Perelman School of Medicine at the University of Pennsylvania, appear online in the New England Journal of Medicine.

Ultrasound-guided fine-needle aspiration biopsies (FNA) accurately identify 62-85 percent of thyroid nodules as benign. For those deemed malignant or unclassifiable, surgery is currently required. However, about 20-35 percent of nodules have inconclusive results after FNA. This novel test classifies genes from the thyroid nodule tissue obtained through FNA.

"This test, currently available at Penn Medicine, can help us determine whether these nodules with indeterminate biopsy results are likely to be benign," said Susan Mandel, MD, MPH, professor of Medicine in Endocrinology, Diabetes and Metabolism in the Perelman School of Medicine at Penn."If so, patients may be able to avoid unnecessary surgeries and lifelong thyroid hormone replacement treatment."

In an accompanying NEJM editorial, J. Larry Jameson, MD, PhD, Dean of the Perelman School of Medicine and Executive Vice President for the Health System at the University of Pennsylvania, notes that the gene expression test is able to identify nodules at low risk of malignancy, making it possible to avoid approximately 25,000 thyroid surgeries per year. "In this era of focusing on high-quality outcomes at lower cost, this new gene expression classifier test is a welcome addition to the tools available for informed decision making about the management of thyroid nodules," writes Jameson.

The gene expression classifier was tested on 265 indeterminate thyroid nodules, and was able to correctly identify 92 percent of cases as suspicious. The test demonstrated a 85 - 95 percent negative predictive value, effectively ruling out a malignancy.

The Penn research team included Dr. Mandel, Zubair Baloch, MD, PhD, and Virginia A. LiVolsi, MD, both professors of Pathology and Laboratory Medicine. The investigation was funded by a research grant provided by Veracyte, Inc., the maker of the gene expression classifier.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Kim Menard | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>