Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flu and bacteria: Better prognosis for this potentially fatal combination

29.04.2013
Research by scientists from the Max F. Perutz Laboratories points to new treatment options

Scientists from the Max F. Perutz Laboratories (MFPL) of the University of Vienna and the Medical University of Vienna have provided insights into how much harm bacteria can cause to the lung of people having the flu. An infection with both the flu and bacteria can be a fatal combination.


Lung cells infected with influenza virus (stained green) and Legionella (stained red). The nucleus of the cell is stained blue. (Copyright: A. Jamieson)

The results could prompt the development of alternative treatments for flu-related bacterial infections, to improve patient outcome and prevent permanent lung damage. The study is published in the renown journal “Science”.

A potentially fatal combination: the flu and bacteria
The flu is caused by an infection with the influenza virus, which mainly attacks the upper respiratory tract – the nose, throat and bronchi and rarely also the lungs. According to the World Health Organization (WHO), around five to 15 percent of the population are affected by upper respiratory tract infections during seasonal flu outbreaks, and between 250 000-500 000 people die of the illness every year. However, a main cause of death in people having the flu is actually a secondary infection with bacteria.
Influenza increases susceptibility to bacterial infection
When we are sick with influenza virus, for many reasons our susceptibility to bacterial infection is increased. One type of bacteria that the immune system usually prevents from spreading and becoming harmful for us is called Legionella pneumophila. However in some circumstances, such as when we’re infected with influenza virus, Legionella can cause pneumonia, an inflammatory disease of the lung that if left untreated can leave the lung permanently damaged and even cause death. Amanda Jamieson, the lead author of the report and a research fellow in the Department of Microbiology, Immunobiology and Genetics of the University of Vienna, started to study this phenomenon while working in the laboratory of Ruslan Medzhitov, an immunologist at Yale University School of Medicine, USA, and has continued the project in Vienna in collaboration with Dr. Thomas Decker at the MFPL of the University of Vienna and the Medical University of Vienna. “In our model system an infection with influenza and Legionella was fatal. We expected that this would be caused by the bacteria growing and spreading like crazy, but what we actually found was that the number of bacteria didn’t change, which was a big surprise”, says Amanda Jamieson.
Enhancing tissue repair pathways aids treatment of flu-related bacterial infections

Amanda Jamieson and her collaborators could show now that the damage to the lung tissue caused by a co-infection with flu and Legionella is not properly repaired, as the influenza virus suppresses the body’s ability to repair tissue damage. In case of an additional Legionella infection this may lead to fatal pneumonia. However, treatment with drugs that activate tissue repair pathways significantly improved the outcome. This suggests that new treatment options to deal with co-infections of flu and bacteria should be explored. Amanda Jamieson, who will take up an Assistant Professorship at Brown University, USA, in two months, says: “My group will continue to work on tissue repair models and explore different avenues for the treatment of flu/bacterial co-infections.”

Original publication in Science Express:
Amanda M. Jamieson, Lesley Pasman, Shuang Yu, Pia Gamradt, Robert J. Homer, Thomas Decker and Ruslan Medzhitov: Role of tissue protection in lethal respiratory viral-bacterial coinfection. Science (April 2013).
Max F. Perutz Laboratories
The Max F. Perutz Laboratories (MFPL) are a center established by the University of Vienna and the Medical University of Vienna to provide an environment for excellent, internationally recognized research and education in the field of Molecular Biology. Currently, the MFPL host around 60 independent research groups, involving more than 530 people from 40 nations.
Scientific contact
Dr. Amanda Jamieson
Max F. Perutz Laboratories
Department of Microbiology, Immunobiology and Genetics
T +43-1-4277-546 11
amanda.jamieson@univie.ac.at
Further inquiries
Dr. Lilly Sommer
Max F. Perutz Laboratories
Communications
T +43-1-4277-240 14
lilly.sommer@univie.ac.at

Amanda Jamieson | EurekAlert!
Further information:
http://www.univie.ac.at

More articles from Health and Medicine:

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Chances to treat childhood dementia

24.07.2017 | Health and Medicine

Improved Performance thanks to Reduced Weight

24.07.2017 | Automotive Engineering

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>