Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flu and bacteria: Better prognosis for this potentially fatal combination

29.04.2013
Research by scientists from the Max F. Perutz Laboratories points to new treatment options

Scientists from the Max F. Perutz Laboratories (MFPL) of the University of Vienna and the Medical University of Vienna have provided insights into how much harm bacteria can cause to the lung of people having the flu. An infection with both the flu and bacteria can be a fatal combination.


Lung cells infected with influenza virus (stained green) and Legionella (stained red). The nucleus of the cell is stained blue. (Copyright: A. Jamieson)

The results could prompt the development of alternative treatments for flu-related bacterial infections, to improve patient outcome and prevent permanent lung damage. The study is published in the renown journal “Science”.

A potentially fatal combination: the flu and bacteria
The flu is caused by an infection with the influenza virus, which mainly attacks the upper respiratory tract – the nose, throat and bronchi and rarely also the lungs. According to the World Health Organization (WHO), around five to 15 percent of the population are affected by upper respiratory tract infections during seasonal flu outbreaks, and between 250 000-500 000 people die of the illness every year. However, a main cause of death in people having the flu is actually a secondary infection with bacteria.
Influenza increases susceptibility to bacterial infection
When we are sick with influenza virus, for many reasons our susceptibility to bacterial infection is increased. One type of bacteria that the immune system usually prevents from spreading and becoming harmful for us is called Legionella pneumophila. However in some circumstances, such as when we’re infected with influenza virus, Legionella can cause pneumonia, an inflammatory disease of the lung that if left untreated can leave the lung permanently damaged and even cause death. Amanda Jamieson, the lead author of the report and a research fellow in the Department of Microbiology, Immunobiology and Genetics of the University of Vienna, started to study this phenomenon while working in the laboratory of Ruslan Medzhitov, an immunologist at Yale University School of Medicine, USA, and has continued the project in Vienna in collaboration with Dr. Thomas Decker at the MFPL of the University of Vienna and the Medical University of Vienna. “In our model system an infection with influenza and Legionella was fatal. We expected that this would be caused by the bacteria growing and spreading like crazy, but what we actually found was that the number of bacteria didn’t change, which was a big surprise”, says Amanda Jamieson.
Enhancing tissue repair pathways aids treatment of flu-related bacterial infections

Amanda Jamieson and her collaborators could show now that the damage to the lung tissue caused by a co-infection with flu and Legionella is not properly repaired, as the influenza virus suppresses the body’s ability to repair tissue damage. In case of an additional Legionella infection this may lead to fatal pneumonia. However, treatment with drugs that activate tissue repair pathways significantly improved the outcome. This suggests that new treatment options to deal with co-infections of flu and bacteria should be explored. Amanda Jamieson, who will take up an Assistant Professorship at Brown University, USA, in two months, says: “My group will continue to work on tissue repair models and explore different avenues for the treatment of flu/bacterial co-infections.”

Original publication in Science Express:
Amanda M. Jamieson, Lesley Pasman, Shuang Yu, Pia Gamradt, Robert J. Homer, Thomas Decker and Ruslan Medzhitov: Role of tissue protection in lethal respiratory viral-bacterial coinfection. Science (April 2013).
Max F. Perutz Laboratories
The Max F. Perutz Laboratories (MFPL) are a center established by the University of Vienna and the Medical University of Vienna to provide an environment for excellent, internationally recognized research and education in the field of Molecular Biology. Currently, the MFPL host around 60 independent research groups, involving more than 530 people from 40 nations.
Scientific contact
Dr. Amanda Jamieson
Max F. Perutz Laboratories
Department of Microbiology, Immunobiology and Genetics
T +43-1-4277-546 11
amanda.jamieson@univie.ac.at
Further inquiries
Dr. Lilly Sommer
Max F. Perutz Laboratories
Communications
T +43-1-4277-240 14
lilly.sommer@univie.ac.at

Amanda Jamieson | EurekAlert!
Further information:
http://www.univie.ac.at

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>