Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flu antibody’s 'one-handed grab' may boost effort toward universal vaccine, new therapies

17.09.2012
Ads in Craigslist lead to potential medical advance

Scientists from The Scripps Research Institute and Sea Lane Biotechnologies have solved the co-crystal structure of a human antibody that can neutralize influenza viruses in a unique way.


To counteract a broad range of dangerous flu viruses, the unique C05 antibody (red) binds to influenza’s hemagglutinin protein (blue) in an unusual way.

Credit: Wilson lab, The Scripps Research Institute

The antibody recognizes the crucial structure that flu viruses use to attach to host cells, even though previously this structure had been thought too small for an antibody to grab effectively. The immune protein manages to hit this precise spot by using just a small part of its target-grabbing apparatus. In so doing, it can neutralize a broad range of dangerous flu viruses.

"This highly focused binding to the receptor binding site using only a single loop on the antibody has never been seen before, and it's really fascinating; it gives us some good ideas about designs for vaccines and therapies," said Ian A. Wilson, the Hansen Professor of Structural Biology at Scripps Research. Wilson was senior investigator of the study along with Ramesh R. Bhatt of Sea Lane Biotechnologies. The report appears online ahead of print on September 16, 2012, in the journal Nature.

The Power of Large Numbers

Sea Lane Biotechnologies, advised by Richard Lerner, the Lita Annenberg Hazen Professor of Immunochemistry at Scripps Research, began by collecting bone marrow from patients who had been exposed to certain key strains of flu. Because the bone marrow is a "fossil record" of all the antibodies a person has ever made, those at Sea Lane felt confident that the antibodies they were looking for would be there. Sea Lane's efforts even went as far as to include advertised appeals on Craigslist for individuals who had certain strains of the flu. Using the internationally and locally collected bone marrow, Sea Lane generated a "comprehensive flu library" of billions of antibodies.

Sea Lane Biotechnologies scientists, led by Bhatt, isolated the unusual new antibody, which they dubbed C05, by screening this enormous library for antibodies that could bind to proteins from a variety of influenza A viruses—the most dangerous family of flu viruses.

C05 also protected cells in the lab dish from infection by these viruses. In mice, relatively low doses of C05 prevented infections despite influenza A exposures that would have been lethal. The antibody worked as a therapy, too, rescuing 100 percent of mice when administered up to three days after a flu infection had begun.

An Unusual Grip for a Tricky Target

Further tests revealed a curious property of C05. Almost uniquely among broadly neutralizing antibodies against influenza A, it specifically recognizes and blocks the part of the flu virus that mediates viral attachment to host cells. Known as the "receptor binding site" (RBS), this viral site is located on the heads of viral hemagglutinins, spiky structures of sugar and protein that coat the viral envelope.

The RBS is a key functional site on flu viruses and is relatively exposed to the immune system compared to other viral regions. It would be an ideal target for antibodies, except that it is quite small compared to an antibody's usual grip area.

An antibody binds targets using two arm-like structures, each of which has six protein fingers or loops. To get a good grip on the flu RBS with some or all these loops, a typical antibody has to grab not only the RBS, but also some of the surrounding structures in the head, which vary from one flu strain to another. Thus, an antibody that does get a firm grip on this region for one flu strain generally will lose that grip once the strain mutates. "This is why universal flu vaccine strategies in recent years have been focused more on the hemagglutinin stem than on the head," noted Damian C. Ekiert, formerly of Wilson's laboratory at Scripps Research and now of University of California, San Francisco. Ekiert was first author of the paper with Arun K. Kashyap of Sea Lane Biotechnologies.

Wilson's laboratory specializes in the use of X-ray crystallography and other techniques to determine precisely where and how such antibodies bind to their viral targets. Using these methods, his team found that C05 effectively avoids grabbing the hypervariable regions around the flu RBS. Instead it uses a single elongated protein loop to reach in and make a "one-handed"—or "one-fingered"—grab of the RBS itself. The antibody apparently works best when two of these active loops, one on each arm, grab two viral RBSs on separate hemagglutinins. "It looks like these antibodies need to cross-link two hemagglutinins to have maximum effect," said Wilson.

Potentially Useful

The RBS has such an important function that it does not change much from strain to strain—and thus C05 can neutralize a broad range of dangerous influenza A viruses, including H1, H2, H3, and H9 subtypes.

The fact that C05 can make such a precision grab suggests that it and perhaps even more potent antibodies could contribute to antibody-based therapies for severe influenza infections. A universal flu vaccine also might be significantly more effective if it could be designed to elicit such antibodies in people.

"If we can figure out how to induce this sort of antibody in a vaccine, we would have something that's very useful," said Lawrence Horowitz, CEO of Sea Lane Biotechnologies.

In addition to Wilson, Bhatt, Ekiert, Kashyap, and Horowitz, authors of the paper, "Neutralization of Influenza A viruses by insertion of a single antibody loop into the receptor binding site," included Michael A. Dillon, Ryann E. O'Neil, Aleksandr M. Faynboym, and Michael Horowitz of Sea Lane; John Steele and Peter Palese of the Mount Sinai School of Medicine; Adam Rubrum and Richard Webby of St. Jude Children's Research Hospital of Memphis, Tennessee; and Gira Bhabha, Reza Khayat, Jeong Hyun Lee, and Andrew B. Ward of Scripps Research.

The study was funded in part by grants from the National Institutes of Health (P01 AI058113 and GM080209) and the Skaggs Institute for Chemical Biology at Scripps Research.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.

About Sea Lane Biotechnologies, LLC

Sea Lane Biotechnologies, LLC is focused on innovating biotherapeutic discovery with transformative technologies and platforms that are necessary to meet contemporary pharmaceutical biologic portfolio requirements. Founded in 2005 in the Silicon Valley, the company is dedicated to the discovery and development of biotherapeutic drugs based upon a novel class of proteins called Surrobodies™ and world-class antibodies for the treatment of serious human diseases, such as cancer and viral infection. Sea Lane currently has several proprietary product candidates in pre-clinical testing.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>