Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings on chromosome changes in tumour cells

09.11.2010
New progress has been made on the road to understanding the origins of genetic changes in tumour cells.

The prevalent theory has been that genetic changes in tumour cells come about in multiple stages over a long time. However, a recent study by researchers at Lund University shows that this does not have to be the case at all, but that the cancer cells instead can be subject to several major chromosomal changes at the same time.

By filming cancer cells as they grow, the researchers discovered that tumour cells can undergo a special form of division that is not seen in healthy cells.

The results are presented in the scientific journal PNAS. Behind the study are researcher and doctor David Gisselsson Nord and colleagues in his research group.

“We have long known that changes in the genetic make-up of body cells play a part in the development of tumours. However, we don’t know a lot about how the genetic changes in the tumour cells actually come about. Above all, it has been difficult to understand why many tumour cells contain extra copies of one or more chromosomes, despite the fact that this is the most common type of chromosome abnormality in cancer cells”, says David Gisselsson Nord.

The research group’s findings mean new and important knowledge of how such chromosome damage can arise. By filming cancer cells as they grow over a long period of time, they discovered that tumour cells can undergo a special form of division. Normal cells divide in two opposite directions and we already know that tumour cells sometimes divide towards three poles.

“We were even more surprised to see that two of the three poles often fused together to form one daughter cell. This daughter cell thus got extra copies of one or more chromosomes. When we continued to film the cells it emerged that they could continue to divide and they thus gave rise to new cancer cells with a chromosome set that was different from the original cell”, says David Gisselsson Nord.

“These major, simultaneous chromosome changes could explain why tumours in young children, which have not had very long to grow, can demonstrate comprehensive changes in genetic make-up”, he says.

The study, which has been carried out in close collaboration with the newly started Lund company PHI AB, was performed on cells from a type of cancer known as Wilms’ tumour – a disease that generally affects children of pre-school age.

It has not been possible to carry out a study of this type until now because it has previously been difficult to film living cells in detail over a long time without exposing the cells to harmful fluorescent light. As an alternative, the researchers in this study used digital holographic microscopy, a novel technique by which cells are exposed only to weak laser light for very limited time periods.

Both the research group in Lund and other groups have previously shown that a high proportion of abnormal cell divisions of the type that they have now studied are linked to a higher risk of children with Wilms’ tumour dying of the disease.

“Now we can more easily understand why this is the case, because it is believed that an accumulation of cells with mutually different genetic make-up within a tumour means that they respond less well to chemotherapy. But this is still only a theory”, says David Gisselsson Nord.

It is hoped that this type of cell division can be used in some way as a target for cancer treatment, but the research is complicated and a lot of work remains to be done.

“At the moment, the most important thing is to wait for our findings to be confirmed by other studies”, says David Gisselsson Nord.

David Gisselsson Nord, Reader in Clinical Genetics, tel. +46 (0)733 91 40 36,
+46 (0)46 17 34 18, David.Gisselsson_Nord@med.lu.se

Megan Grindlay | idw
Further information:
http://www.pnas.org
http://www.vr.se

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>