Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings on chromosome changes in tumour cells

09.11.2010
New progress has been made on the road to understanding the origins of genetic changes in tumour cells.

The prevalent theory has been that genetic changes in tumour cells come about in multiple stages over a long time. However, a recent study by researchers at Lund University shows that this does not have to be the case at all, but that the cancer cells instead can be subject to several major chromosomal changes at the same time.

By filming cancer cells as they grow, the researchers discovered that tumour cells can undergo a special form of division that is not seen in healthy cells.

The results are presented in the scientific journal PNAS. Behind the study are researcher and doctor David Gisselsson Nord and colleagues in his research group.

“We have long known that changes in the genetic make-up of body cells play a part in the development of tumours. However, we don’t know a lot about how the genetic changes in the tumour cells actually come about. Above all, it has been difficult to understand why many tumour cells contain extra copies of one or more chromosomes, despite the fact that this is the most common type of chromosome abnormality in cancer cells”, says David Gisselsson Nord.

The research group’s findings mean new and important knowledge of how such chromosome damage can arise. By filming cancer cells as they grow over a long period of time, they discovered that tumour cells can undergo a special form of division. Normal cells divide in two opposite directions and we already know that tumour cells sometimes divide towards three poles.

“We were even more surprised to see that two of the three poles often fused together to form one daughter cell. This daughter cell thus got extra copies of one or more chromosomes. When we continued to film the cells it emerged that they could continue to divide and they thus gave rise to new cancer cells with a chromosome set that was different from the original cell”, says David Gisselsson Nord.

“These major, simultaneous chromosome changes could explain why tumours in young children, which have not had very long to grow, can demonstrate comprehensive changes in genetic make-up”, he says.

The study, which has been carried out in close collaboration with the newly started Lund company PHI AB, was performed on cells from a type of cancer known as Wilms’ tumour – a disease that generally affects children of pre-school age.

It has not been possible to carry out a study of this type until now because it has previously been difficult to film living cells in detail over a long time without exposing the cells to harmful fluorescent light. As an alternative, the researchers in this study used digital holographic microscopy, a novel technique by which cells are exposed only to weak laser light for very limited time periods.

Both the research group in Lund and other groups have previously shown that a high proportion of abnormal cell divisions of the type that they have now studied are linked to a higher risk of children with Wilms’ tumour dying of the disease.

“Now we can more easily understand why this is the case, because it is believed that an accumulation of cells with mutually different genetic make-up within a tumour means that they respond less well to chemotherapy. But this is still only a theory”, says David Gisselsson Nord.

It is hoped that this type of cell division can be used in some way as a target for cancer treatment, but the research is complicated and a lot of work remains to be done.

“At the moment, the most important thing is to wait for our findings to be confirmed by other studies”, says David Gisselsson Nord.

David Gisselsson Nord, Reader in Clinical Genetics, tel. +46 (0)733 91 40 36,
+46 (0)46 17 34 18, David.Gisselsson_Nord@med.lu.se

Megan Grindlay | idw
Further information:
http://www.pnas.org
http://www.vr.se

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>