Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings on chromosome changes in tumour cells

09.11.2010
New progress has been made on the road to understanding the origins of genetic changes in tumour cells.

The prevalent theory has been that genetic changes in tumour cells come about in multiple stages over a long time. However, a recent study by researchers at Lund University shows that this does not have to be the case at all, but that the cancer cells instead can be subject to several major chromosomal changes at the same time.

By filming cancer cells as they grow, the researchers discovered that tumour cells can undergo a special form of division that is not seen in healthy cells.

The results are presented in the scientific journal PNAS. Behind the study are researcher and doctor David Gisselsson Nord and colleagues in his research group.

“We have long known that changes in the genetic make-up of body cells play a part in the development of tumours. However, we don’t know a lot about how the genetic changes in the tumour cells actually come about. Above all, it has been difficult to understand why many tumour cells contain extra copies of one or more chromosomes, despite the fact that this is the most common type of chromosome abnormality in cancer cells”, says David Gisselsson Nord.

The research group’s findings mean new and important knowledge of how such chromosome damage can arise. By filming cancer cells as they grow over a long period of time, they discovered that tumour cells can undergo a special form of division. Normal cells divide in two opposite directions and we already know that tumour cells sometimes divide towards three poles.

“We were even more surprised to see that two of the three poles often fused together to form one daughter cell. This daughter cell thus got extra copies of one or more chromosomes. When we continued to film the cells it emerged that they could continue to divide and they thus gave rise to new cancer cells with a chromosome set that was different from the original cell”, says David Gisselsson Nord.

“These major, simultaneous chromosome changes could explain why tumours in young children, which have not had very long to grow, can demonstrate comprehensive changes in genetic make-up”, he says.

The study, which has been carried out in close collaboration with the newly started Lund company PHI AB, was performed on cells from a type of cancer known as Wilms’ tumour – a disease that generally affects children of pre-school age.

It has not been possible to carry out a study of this type until now because it has previously been difficult to film living cells in detail over a long time without exposing the cells to harmful fluorescent light. As an alternative, the researchers in this study used digital holographic microscopy, a novel technique by which cells are exposed only to weak laser light for very limited time periods.

Both the research group in Lund and other groups have previously shown that a high proportion of abnormal cell divisions of the type that they have now studied are linked to a higher risk of children with Wilms’ tumour dying of the disease.

“Now we can more easily understand why this is the case, because it is believed that an accumulation of cells with mutually different genetic make-up within a tumour means that they respond less well to chemotherapy. But this is still only a theory”, says David Gisselsson Nord.

It is hoped that this type of cell division can be used in some way as a target for cancer treatment, but the research is complicated and a lot of work remains to be done.

“At the moment, the most important thing is to wait for our findings to be confirmed by other studies”, says David Gisselsson Nord.

David Gisselsson Nord, Reader in Clinical Genetics, tel. +46 (0)733 91 40 36,
+46 (0)46 17 34 18, David.Gisselsson_Nord@med.lu.se

Megan Grindlay | idw
Further information:
http://www.pnas.org
http://www.vr.se

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>