Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings on chromosome changes in tumour cells

09.11.2010
New progress has been made on the road to understanding the origins of genetic changes in tumour cells.

The prevalent theory has been that genetic changes in tumour cells come about in multiple stages over a long time. However, a recent study by researchers at Lund University shows that this does not have to be the case at all, but that the cancer cells instead can be subject to several major chromosomal changes at the same time.

By filming cancer cells as they grow, the researchers discovered that tumour cells can undergo a special form of division that is not seen in healthy cells.

The results are presented in the scientific journal PNAS. Behind the study are researcher and doctor David Gisselsson Nord and colleagues in his research group.

“We have long known that changes in the genetic make-up of body cells play a part in the development of tumours. However, we don’t know a lot about how the genetic changes in the tumour cells actually come about. Above all, it has been difficult to understand why many tumour cells contain extra copies of one or more chromosomes, despite the fact that this is the most common type of chromosome abnormality in cancer cells”, says David Gisselsson Nord.

The research group’s findings mean new and important knowledge of how such chromosome damage can arise. By filming cancer cells as they grow over a long period of time, they discovered that tumour cells can undergo a special form of division. Normal cells divide in two opposite directions and we already know that tumour cells sometimes divide towards three poles.

“We were even more surprised to see that two of the three poles often fused together to form one daughter cell. This daughter cell thus got extra copies of one or more chromosomes. When we continued to film the cells it emerged that they could continue to divide and they thus gave rise to new cancer cells with a chromosome set that was different from the original cell”, says David Gisselsson Nord.

“These major, simultaneous chromosome changes could explain why tumours in young children, which have not had very long to grow, can demonstrate comprehensive changes in genetic make-up”, he says.

The study, which has been carried out in close collaboration with the newly started Lund company PHI AB, was performed on cells from a type of cancer known as Wilms’ tumour – a disease that generally affects children of pre-school age.

It has not been possible to carry out a study of this type until now because it has previously been difficult to film living cells in detail over a long time without exposing the cells to harmful fluorescent light. As an alternative, the researchers in this study used digital holographic microscopy, a novel technique by which cells are exposed only to weak laser light for very limited time periods.

Both the research group in Lund and other groups have previously shown that a high proportion of abnormal cell divisions of the type that they have now studied are linked to a higher risk of children with Wilms’ tumour dying of the disease.

“Now we can more easily understand why this is the case, because it is believed that an accumulation of cells with mutually different genetic make-up within a tumour means that they respond less well to chemotherapy. But this is still only a theory”, says David Gisselsson Nord.

It is hoped that this type of cell division can be used in some way as a target for cancer treatment, but the research is complicated and a lot of work remains to be done.

“At the moment, the most important thing is to wait for our findings to be confirmed by other studies”, says David Gisselsson Nord.

David Gisselsson Nord, Reader in Clinical Genetics, tel. +46 (0)733 91 40 36,
+46 (0)46 17 34 18, David.Gisselsson_Nord@med.lu.se

Megan Grindlay | idw
Further information:
http://www.pnas.org
http://www.vr.se

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>