Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why fad diets work well for some, but not others

29.07.2010
Research published in the journal Genetics suggests that genetic interaction with diet primarily determines variations in metabolic traits such as body weight, as opposed to diet alone

Ever notice some people seem to eat anything they want and never gain a pound, while others seem to gain weight just by looking at fattening foods? You may be seeing things correctly after all. According to research published in the July 2010 issue of Genetics (http://www.genetics.org), this may have a biological cause.

Using fruit flies, researchers have found that genes interacting with diet, rather than diet alone, are the main cause of variation in metabolic traits, such as body weight. This helps explain why some diets work better for some people than others, and suggests that future diets should be tailored to an individual's genes rather than to physical appearance.

"There is no one-size-fits all solution to the diseases of obesity and type-2 diabetes," said Laura K. Reed, Ph.D, a researcher from the Department of Genetics at North Carolina State University, the lead investigator in the work. "Each person has a unique set of genetic and environmental factors contributing to his or her metabolic health, and as a society, we should stop looking for a panacea and start accepting that this is a complex problem that may have a different solution for each individual."

To make this discovery, the scientists studied 146 different genetic lines of fruit flies that were fed four different diets (nutritionally balanced, low calorie, high sugar, and high fat). Researchers then measured a variety of metabolic traits, including body weight, in each group. Flies in some of the genetic lines were highly sensitive to their diets, as reflected by changes in body weight, while flies of other lines showed no change in weight across diets. The scientists were able to ascertain what portion of the total variation in the metabolic traits was determined by genetics alone, by diet alone, or by the interaction between genotype and diet. Results showed that diet alone made a small contribution to the total variation, while genotype and genotype interactions with diet made very large contributions. This study strongly suggests that some individuals can achieve benefits from altering their dietary habits, while the same changes for others will have virtually no effect.

"The summer beach season often serves as a 'gut check' for many in terms of their weight," said Mark Johnston, Editor-in-Chief of the journal Genetics. "This research explains why the one-size-fits-all approach offered by many diet programs can have dramatically different effects for people who try them."

Since 1916, Genetics (http://www.genetics.org) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. Genetics, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most-cited journals in genetics and heredity.

Tracey DePellegrin Connelly | EurekAlert!
Further information:
http://www.genetics.org

More articles from Health and Medicine:

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

nachricht Improving memory with magnets
28.03.2017 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>