Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eye proteins have germ-killing power, could lead to new antimicrobial drugs, study finds

25.09.2012
When it comes to germ-busting power, the eyes have it, according to a discovery by UC Berkeley researchers that could lead to new, inexpensive antimicrobial drugs.

A team of UC Berkeley vision scientists has found that small fragments of keratin protein in the eye play a key role in warding off pathogens. The researchers also put synthetic versions of these keratin fragments to the test against an array of nasty pathogens.

These synthetic molecules effectively zapped bacteria that can lead to flesh-eating disease and strep throat (Streptococcus pyogenes), diarrhea (Escherichia coli), staph infections (Staphylococcus aureus) and cystic fibrosis lung infections (Pseudomonas aeruginosa).

The findings, to be published in the October issue of the Journal of Clinical Investigation, could lead to a powerful new weapon in the battle against disease-causing invaders. These keratin fragments are relatively easy to manufacture, making them good candidates for low-cost therapeutics, the study authors said.

“What’s really exciting is that the keratins in our study are already in the body, so we know that they are not toxic, and that they are biocompatible,” said the study’s principal investigator, Suzanne Fleiszig, a professor at UC Berkeley’s School of Optometry who specializes in infectious diseases and microbiology. “The problem with small, naturally occurring, antimicrobial molecules identified in previous research is that they were either toxic or easily inactivated by concentrations of salt that are normally found in our bodies.”

These new small proteins in the study were derived from cytokeratin 6A, one of the filament proteins that connect to form a mesh throughout the cytoplasm of epithelial cells.

“We used to think that cytokeratins were primarily structural proteins, but our study shows that these fragments of keratin also have microbe-fighting capabilities,” said study lead author Connie Tam, an assistant research scientist in Fleiszig’s lab. “Cytokeratin 6A can be found in the epithelial cells of the human cornea as well as in skin, hair and nails. These are all areas of the body that are constantly exposed to microbes, so it makes sense that they would be part of the body’s defense.”

In a commentary published alongside the study, Michael Zasloff, professor of surgery and pediatrics at Georgetown University’s School of Medicine, said these “keratin-derived antimicrobial peptides appear to be exciting new biocompatible candidates for development as human anti-infective therapeutics.”

The researchers in Fleiszig’s lab came upon cytokeratin 6A in their efforts to solve the mystery behind the eye’s remarkable resilience to infection. They noticed that the surface of the eye, unlike other surfaces of the body, did not have bacteria living on it, and that corneal tissue could handily wipe out a barrage of pathogens in lab culture experiments.

“It is very difficult to infect the cornea of a healthy eye,” said Fleiszig. “We’ve even used tissue paper to damage the eye’s surface cells and then plastered them with bacteria, and still had trouble getting bacteria to enter the cornea. So we proposed that maybe there were antimicrobial factors that are unique to the eye.”

In the hunt for this mystery compound, the researchers cultured human corneal epithelial cells and exposed them to the P. aeruginosa bacteria. They used mass spectrometry to sort out which peptides were most active in fighting off the bacteria. Cytokeratin 6A-derived peptides emerged the winners, and surprisingly, peptide fragments as short as 10 amino acids were effective.

To confirm that they got the right protein, the researchers used gene-silencing techniques to reduce the expression of cytokeratin 6A in the cornea of mice. With a key defense disabled, the amount of bacteria that adhered to the corneas increased fivefold.

Tests showed that cytokeratin 6A-derived fragments could quickly kill bacteria in water and in a saline solution, showing that the salt contained in human tears would not dilute the protein’s effectiveness. Other experiments indicated that cytokeratin 6A fragments prevented the bacteria from attacking epithelial cells, and that the proteins cause bacterial membranes to leak, killing the pathogen within minutes.

The researchers noted that further research could reveal numerous different keratin fragments in the body’s innate defense system.

“Keratins may represent a novel class of antimicrobials with the potential to be designed to selectively kill specific pathogens,” said Tam.

Other study co-authors from UC Berkeley’s School of Optometry are James Mun, a former UC Berkeley Ph.D. student, and David Evans, a UC Berkeley associate research scientist and a professor of biological and pharmaceutical sciences at Touro University California in Vallejo.

The Bill and Melinda Gates Foundation and the National Institutes of Health provided support for this research.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>