Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental bariatric surgery controls blood sugar in rats with diabetes

21.05.2012
For the first time, scientists at the Toronto General Hospital Research Institute have shown that an experimental bariatric surgery can lower blood sugar levels in rats with type 1 diabetes.

A team led by Dr. Tony Lam and Dr. Danna Breen, a post- doctoral fellow in the lab of Dr. Lam, used a rat model to study novel nutrient-sensing signals in the jejunum, located in the middle of the intestine. Dr. Lam and his team demonstrate that duodenal-jejunal bypass surgery activates novel nutrient-sensing signals in the jejunum and rapidly lowers blood sugar levels in non-obese rats with uncontrolled diabetes.

DJB surgery is a type of bariatric surgery which excludes the duodenum and proximal jejunum, the first section of the small intestine, and instead redirects food into the distal jejunum, the middle to last section of the intestine. This latter section of the intestine, as demonstrated by Dr. Lam and his team, can sense glucose and signal to the brain to let the liver know that it must lower glucose production, leading to better control of blood sugar in the diabetic rats.

The study showed for the first time that a surgical intervention induces a rapid glucose-lowering effect in non-obese type 1 uncontrolled diabetic rats, independent of a reduction in food intake and body weight as well as changes in blood insulin levels.

The research was published in a paper entitled, "Jejunal nutrient sensing is required for duodenal-proximal jejunal bypass surgery to lower glucose levels in uncontrolled diabetes," in the May 20, 2012 on-line edition of the international journal Nature Medicine.

"We report that shortly after a meal, the influx of nutrients into the jejunum of DJB surgical diabetic rats activates novel sensing mechanisms to lower blood sugar levels. Importantly, this occurs in the presence of insulin-deficiency and is independent of weight loss," says Dr. Lam, who holds The John Kitson McIvor (1915 – 1942) Endowed Chair in Diabetes Research and the Canada Research Chair in Obesity at the Toronto General Research Institute and the University of Toronto. He is also Associate Director of Research at the Banting and Best Diabetes Centre at the University of Toronto.

Currently, patients with Type 1 diabetes lower their glucose through insulin injections (usually several times a day) and must regularly monitor blood glucose levels. High or uncontrolled glucose levels can result in damage to eyes, nerves and kidneys and increase the risk of heart attack, stroke, blindness, erectile dysfunction, foot problems and amputations. Many laboratories around the world are in a race to find alternative and effective ways in which to lower and better control glucose levels because of the severe complications which can result from high sugar levels.

Dr. Lam's laboratory is a world pioneer in exploring the role of the gut in regulating blood sugar. "The gut is an easier and therefore more promising therapeutic target in regulating blood sugar than the brain or liver, due to their potential side effects, " says Dr. Danna Breen, who is the lead author in the study. Dr. Breen adds that this type of surgery may potentially have therapeutic value in lowering glucose (sugar) levels in non-obese individuals with type 2 or 1 diabetes, but that many more years of future studies are required to determine whether this approach is effective and safe in humans who have diabetes.

In healthy individuals, insulin is a hormone whose primary role is to regulate blood sugar. It is produced by cells located on the pancreas in response to sugar intake, and it acts to bring blood sugar to appropriate levels, allowing the body to have the energy it needs to function properly. In persons with type 1 diabetes, the pancreas does not produce insulin, resulting in elevated blood sugar levels due to lack of insulin which cannot signal to the liver to reduce sugar production. People with type 1 diabetes need to take daily insulin shots and carefully monitor their blood sugar levels.
"If new medicines or surgical interventions can be developed that stimulate this sensing mechanism in the gut, we may have an effective and alternative way of slowing down the body's production of sugar, thereby lowering blood sugar levels in diabetes," says Dr. Lam, who is also an Associate Professor of Medicine and Physiology at the University of Toronto. Other ongoing studies of Dr. Lam's lab reveal novel molecular targets in the gut that effectively lower blood sugar in obesity and type 2 diabetes.

Studies reported in the New England Journal of Medicine this year have challenged medical therapy as the prevailing method of treating patients with type 2 diabetes. Two studies reported that bariatric surgery induced remission in severely obese patients with type 2 diabetes, and was associated with significant improvement in metabolic control over and above medical therapy, both conventional and intensive. An accompanying April 26, 2012 editorial by Drs. Zimmet and Alberti, states that "surgeons may now be able to claim greater success in achieving metabolic control", in these patients, although long-term studies with greater numbers of patients still need to be completed. No studies have yet reported on surgical interventions as treatments for patients with type 1 diabetes.

"More than two million Canadians have diabetes. Diabetes is an epidemic in Canada and around the world that is growing at an alarming rate," says Dr. Philip M. Sherman, Scientific Director of the Institute of Nutrition, Metabolism and Diabetes at the Canadian Institutes of Health Research. "Since many people are undergoing bariatric surgery in an attempt to manage morbid obesity and the associated health problems, such as diabetes, it is critical that we understand how it works. The Canadian Institutes of Health Research is pleased to support Dr. Lam's work which increases our understanding and may offer a new approach to managing morbidity and premature mortality resulting from this illness."

Working with rats, Drs. Lam, Breen and colleagues designed and performed a series of elegant experiments on two different groups of rats: rats whose insulin-producing pancreatic islet cells were destroyed by toxins; and genetically-altered rats which experienced spontaneous autoimmune destruction of islet cells – similar to what happens in humans with type 1 diabetes.

Non-obese rats induced with uncontrolled diabetes or autoimmune type 1 diabetes had an experimental DJB surgery, a variation of the Roux-en-Y gastric bypass, the most common surgical method currently used to treat obese patients. Two days after DJB surgery, blood sugars were normal in the insulin-deficient diabetic rats.

Dr. Breen emphasized that further studies need to be undertaken to determine the long-term effects of this intervention in rodents, as well as to ensure the safety and efficacy of this procedure in humans.

Other researchers involved in the study include Brittany A. Rasmussen, Andrea Kokorovic and Grace W.C. Cheung from the Toronto General Research Institute and the Department of Physiology, University of Toronto; and Dr. Rennian Wang, from the Departments of Physiology and Pharmacology, University of Western Ontario.

The work was funded by the Canadian Institutes of Health Research, as well as a fellowship from the University Health Network and the Banting and Best Diabetes Centre, University of Toronto.

About Toronto General Hospital, University Health Network

Toronto General Hospital is a partner in the University Health Network, along with the Toronto Western Hospital, the Princess Margaret Hospital and the Toronto Rehabilitation Institute. These research hospitals are affiliated with the University of Toronto. The scope of research at Toronto General Hospital has made this institution a national and international resource for education and patient care, and a leader in diabetes, transplantation, cardiology, surgical innovation, infectious diseases and genomic medicine.

Alex Radkewycz | EurekAlert!
Further information:
http://www.uhn.ca

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>