Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein scientists propose new theory of autism

03.04.2009
Symptoms of the disorder may be reversible: Fever may hold clues

Scientists at Albert Einstein College of Medicine of Yeshiva University have proposed a sweeping new theory of autism that suggests that the brains of people with autism are structurally normal but dysregulated, meaning symptoms of the disorder might be reversible.

The central tenet of the theory, published in the March issue of Brain Research Reviews, is that autism is a developmental disorder caused by impaired regulation of the locus coeruleus, a bundle of neurons in the brain stem that processes sensory signals from all areas of the body.

The new theory stems from decades of anecdotal observations that some autistic children seem to improve when they have a fever, only to regress when the fever ebbs. A 2007 study in the journal Pediatrics took a more rigorous look at fever and autism, observing autistic children during and after fever episodes and comparing their behavior with autistic children who didn't have fevers. This study documented that autistic children experience behavior changes during fever.

"On a positive note, we are talking about a brain region that is not irrevocably altered. It gives us hope that, with novel therapies, we will eventually be able to help people with autism," says theory co-author Mark F. Mehler, M.D., chairman of neurology and director of the Institute for Brain Disorders and Neural Regeneration at Einstein.

Autism is a complex developmental disability that affects a person's ability to communicate and interact with others. It usually appears during the first three years of life. Autism is called a "spectrum disorder" since it affects individuals differently and to varying degrees. It is estimated that one in every 150 American children has some degree of autism.

Einstein researchers contend that scientific evidence directly points to the locus coeruleus–noradrenergic (LC-NA) system as being involved in autism. "The LC-NA system is the only brain system involved both in producing fever and controlling behavior," says co-author Dominick P. Purpura, M.D., dean emeritus and distinguished professor of neuroscience at Einstein.

The locus coeruleus has widespread connections to brain regions that process sensory information. It secretes most of the brain's noradrenaline, a neurotransmitter that plays a key role in arousal mechanisms, such as the "fight or flight" response. It is also involved in a variety of complex behaviors, such as attentional focusing (the ability to concentrate attention on environmental cues relevant to the task in hand, or to switch attention from one task to another). Poor attentional focusing is a defining characteristic of autism.

"What is unique about the locus coeruleus is that it activates almost all higher-order brain centers that are involved in complex cognitive tasks," says Dr. Mehler.

Drs. Purpura and Mehler hypothesize that in autism, the LC-NA system is dysregulated by the interplay of environment, genetic, and epigenetic factors (chemical substances both within as well as outside the genome that regulate the expression of genes). They believe that stress plays a central role in dysregulation of the LC-NA system, especially in the latter stages of prenatal development when the fetal brain is particularly vulnerable.

As evidence, the researchers point to a 2008 study, published in the Journal of Autism and Developmental Disorders, that found a higher incidence of autism among children whose mothers had been exposed to hurricanes and tropical storms during pregnancy. Maternal exposure to severe storms at mid-gestation resulted in the highest prevalence of autism.

Drs. Purpura and Mehler believe that, in autistic children, fever stimulates the LC-NA system, temporarily restoring its normal regulatory function. "This could not happen if autism was caused by a lesion or some structural abnormality of the brain," says Dr. Purpura.

"This gives us hope that we will eventually be able to do something for people with autism," he adds.

The researchers do not advocate fever therapy (fever induced by artificial means), which would be an overly broad, and perhaps even dangerous, remedy. Instead, they say, the future of autism treatment probably lies in drugs that selectively target certain types of noradrenergic brain receptors or, more likely, in epigenetic therapies targeting genes of the LC-NA system.

"If the locus coeruleus is impaired in autism, it is probably because tens or hundreds, maybe even thousands, of genes are dysregulated in subtle and complex ways," says Dr. Mehler. "The only way you can reverse this process is with epigenetic therapies, which, we are beginning to learn, have the ability to coordinate very large integrated gene networks."

"The message here is one of hope but also one of caution," Dr. Mehler adds. "You can't take a complex neuropsychiatric disease that has escaped our understanding for 50 years and in one fell swoop have a therapy that is going to reverse it — that's folly. On the other hand, we now have clues to the neurobiology, the genetics, and the epigenetics of autism. To move forward, we need to invest more money in basic science to look at the genome and the epigenome in a more focused way."

The paper by Drs. Mehler and Purpura, "Autism, fever, epigenetics and the locus coeruleus," was published in the March issue of Brain Research Reviews.

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. It is the home to some 2,000 faculty members, 750 M.D. students, 350 Ph.D. students (including 125 in combined M.D./Ph.D. programs) and 380 postdoctoral investigators. Last year, Einstein received more than $130 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five hospital centers in the Bronx, Manhattan and Long Island – which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein – the College runs one of the largest post-graduate medical training program in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training.

Deirdre Branley | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>