Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards more effective treatment for multiple myeloma

10.01.2012
SUNY downstate researchers find protein inhibitor has potent anti-tumor effects

A new study from SUNY Downstate Medical Center in Brooklyn, New York, shows that MAL3-101, a recently developed inhibitor of the heat shock protein 70 (Hsp70), appears to have potent anti-tumor effects on multiple myeloma, a bone marrow cancer. Despite aggressive modes of treatments, myeloma ultimately remains incurable. The disease has a high incidence in the communities served by SUNY Downstate.

The findings, published in a recent issue of Journal of Oncology, are the result of a collaborative effort among researchers working in the laboratory of Olcay Batuman, MD, at Downstate; scientists at the University of Pittsburgh, where the small molecule inhibitor MAL3-101 was developed; scientists at the University of California at San Francisco; and other collaborators at SUNY Downstate.

Multiple myeloma is characterized by an accumulation and expansion of neoplastic plasma cells in the bone marrow. Normally, these white blood cells manufacture the antibodies needed to fight infection. When plasma cells become cancerous, however, they invade the bone marrow and the skeleton, and the immune system is severely compromised. Skeletal fragility, fatigue, weight loss, kidney failure, and repeated infections are common key manifestations and causes of morbidity and mortality from multiple myeloma. The risk for developing this disease increases with age.

"Currently multiple myeloma remains an incurable disease, despite the use of stem cell transplants, high-dose chemotherapy, and radiation," explains Dr. Batuman, professor of medicine and cell biology at Downstate and head of the research team that conducted the study. "New treatment modalities are urgently needed," she says.

The study aimed to explore the cytotoxic effects of MAL3-101 on multiple myeloma tumor growth. The researchers found that MAL3-101 exhibited anti-myeloma effects both in vitro and in vivo on tumor cell lines, as well as on primary tumor and endothelial cells from patients. When used in animal studies with the proteasome inhibitor bortezomib, MAL3-101 significantly boosted its anti-myeloma effects. Dr. Batuman's team found that by targeting Hsp70 activity, the dosage of synergic agents such as bortezomib could be reduced without compromising their effectiveness. The ability to reduce dosage makes it possible to continue the use of drugs that are toxic at higher concentrations. The addition of new synergistic agents also enriches the treatment arsenal by reducing drug resistance.

"The results of our study are very encouraging," says Dr. Batuman. "While this is not a cure and it will be some time before the compound is developed as a drug, we believe that MAL3-101, when used synergistically with existing therapies, could reduce overall drug concentrations and avoid treatment resistance."

Dr. Batuman adds, "It is possible to speculate that MAL3-101 may also modulate development of the multiple myeloma cancer stem cell. The relapse of multiple myeloma in patients in whom complete remission had been achieved is currently thought to indicate the presence of treatment-resistant multiple myeloma cancer stem cells. At Downstate, a group effort is now geared towards identifying and targeting these cancer stem cells in multiple myeloma. The anti-myeloma effects of MAL3-101 could include inhibition of cancer stem cell development, since the Hsp-70 function is required in early plasma cell development. Our prediction is that antagonism of the Hsp-70 chaperone or chaperones by affecting non-redundant pathways could be effective in multiple myeloma treatment."

SUNY Downstate Medical Center, founded in 1860, was the first medical school in the United States to bring teaching out of the lecture hall and to the patient's bedside. A center of innovation and excellence in research and clinical service delivery, SUNY Downstate Medical Center comprises a College of Medicine, Colleges of Nursing and Health Related Professions, a School of Graduate Studies, a School of Public Health, University Hospital of Brooklyn, and an Advanced Biotechnology Park and Biotechnology Incubator.

SUNY Downstate ranks ninth nationally in the number of alumni who are on the faculty of American medical schools. More physicians practicing in New York City have graduated from SUNY Downstate than from any other medical school.

Ron Najman | EurekAlert!
Further information:
http://www.downstate.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>