Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Old drug reveals new tricks

01.03.2012
Study of patients infected with both HIV and hepatitis shows how the drug interferon works to suppress virus

A drug once taken by people with HIV/AIDS but long ago shelved after newer, modern antiretroviral therapies became available has now shed light on how the human body uses its natural immunity to fight the virus—work that could help uncover new targets for drugs.

In an article published online this month by the journal PNAS, a group of U.S. and Swiss researchers led by scientists at the University of California, San Francisco (UCSF) presented the first clinical assessment of how this drug fights infections in people. The drug, called interferon, is a biotechnology product based on a protein the body naturally produces to fight infections.

While purified interferon was given to people with HIV/AIDS in the early days of the epidemic because it alleviated many of the symptoms of the disease, its mode of action was always something of a black box.

"Nobody knew how it worked," said Satish K. Pillai, PhD, lead investigator and assistant professor of Medicine at UCSF and the San Francisco VA Medical Center.

Experiments in the laboratory in recent years have shown how interferon may work to suppress HIV in vitro, but there was no clinical evidence until now showing how the drug attacks HIV in treated patients. The problem is that so few people actually take interferon for HIV any more. However, interferon is still used in combination with other drugs to treat hepatitis C, which gave the team the possibility to assess its effect on HIV.

Interferon is commonly used to treat people with hepatitis C virus, and Pillai and his colleagues were able to identify 20 people enrolled in the Swiss HIV Cohort Study, which began in 1988, who have both HIV and hepatitis C. All 20 were taking interferon to treat their hepatitis C, but none were receiving antiretroviral drugs to treat HIV. This allowed researchers to examine how interferon works to suppress the virus.

HOW INTERFERON WORKS

The new work sheds further light on somewhat mysterious components of the immune system known as restriction factors, which are chemicals the human body produces to keep viruses like HIV in check and prevent them from infecting other cells.

These are just two fronts in the overall battle between HIV and the immune system—a battle in which the immune system seeks to destroy the virus while the virus constantly counters by undermining the immune system.

Unlike other parts of the immune system, where whole cells gobble up invading pathogens or attack other cells, the action of these restriction factors is more subtle and localized within the infected cell itself—one of the reasons scientists didn't appreciate what they do until just a few years ago.

One of them, called APOBEC3, fights viruses by stealthily jumping onto new virus particles as they form. Therein, the APOBEC3 protein fouls up HIV's genetic material by mutating it. When the virus tries to infect another cell, it no longer has the potency to replicate.

Another factor, called tetherin, takes an even more direct approach. It attaches to virus particles as they emerge from infected cells in the body and literally tethers them in place, preventing them from moving elsewhere in the body where they could infect new cells.

HIV has its own countermeasures to thwart these defenses. It produces a protein known as Vpu that neutralizes tetherin. Another HIV protein, called Vif, subverts APOBEC.

In the new study, Pillai and his colleagues showed that interferon combats HIV by mediating the action of both of these restriction factors. They collected samples from the 20 patients and measured the levels of APOBEC3 and tetherin before, during and after they took the drug interferon. The levels increased in response to interferon when the drug was in the bloodstream, and patients with the highest restriction factor levels showed the most precipitous drop in HIV viral load during interferon treatment.

While this insight does not immediately suggest new drugs or new ways of treating people with HIV, Pillai said scientists armed with this knowledge may one day figure out how to enhance this defense mechanism and specifically enhance the expression of restriction factors like tetherin and APOBEC3 in HIV-1–infected individuals.

If these factors can be induced to higher levels, their attack on the virus may become more potent—perhaps even overriding HIV's countermeasures and helping flush the virus from infected cells.

The article, "Role of retroviral restriction factors in the interferon-á–mediated suppression of HIV-1 in vivo," was written by Satish K. Pillai, Mohamed Abdel-Mohsen, John Guatelli, Mark Skasko, Alexander Monto, Katsuya Fujimoto, Steven Yukl, Warner C. Greene, Helen Kovari, Andri Rauch, Jacques Fellay, Manuel Battegay, Bernard Hirschel, Andrea Witteck, Enos Bernasconi, Bruno Ledergerber, Huldrych F. Günthard, Joseph K. Wong, and the Swiss HIV Cohort Study.

In addition to UCSF, the authors of this study are affiliated with the San Francisco VA Medical Center, the Veterans Affairs San Diego Healthcare System at the University of California at San Diego, the Gladstone Institute of Virology and Immunology, and the Swiss university hospitals of Zurich, Berne, Lausanne, Basel, Geneva, St. Gallen and Lugano.

This work was funded by the National Institutes of Health and through the American Recovery and Reinvestment Act (ARRA). Additional support was provided by Swiss HIV Cohort Study Project 594; the Veterans Affairs Merit Review; and several Swiss National Science Foundation Grants. The Swiss HIV Cohort Study is supported by the Swiss National Science Foundation and the Swiss HIV Cohort Study Research Foundation.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>