Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Drug for Children with High-Risk Leukemia

31.07.2009
TAU discovers novel alternative to traumatic chemotherapy

Each year, approximately 4,500 children in America are diagnosed with leukemia, according to the Leukemia and Lymphoma Society. A potentially deadly cancer of the blood, it is the most common cancer in children.

"Modern medicine can cure eight out of 10 cases of childhood leukemia, so parents can still be hopeful when they hear a diagnosis," says Dr. Shai Izraeli of Tel Aviv University's Sackler School of Medicine and Sheba Medical Center. "Our research gives hope and life to the 20% who might not make it as well as those who may experience a relapse."

The first researchers to discover a mutation of the JAK2 protein in patients with Down syndrome, the Tel Aviv University team suspected that this protein might also be linked to other disorders and diseases — and they were right. Based on the successful results of this research a drug that is already in clinical trials for a blood disease common in adults may be relevant for acute childhood leukemia. If initial trials go well, the drug could fast-track through approvals and could be available for treating children with leukemia in only a few years.

The recent findings are based on Dr. Izraeli's original discovery of the JAK2 in Down syndrome, published recently in the prestigious medical journal The Lancet.

Finding a model in children with Down syndrome

According to Dr. Izraeli, a similar mutation of the JAK2 in Down syndrome and leukemia causes Polycythemia Vera, a disease common in adults that leads to the overproduction of blood. This discovery of a similar mutation in a subset of pediatric leukemia cases may provide a path to new life-saving medication options.

Dr. Izraeli first discovered JAK2 mutations in children who initially suffered from Down syndrome and subsequently developed leukemia (a child with Down syndrome is 20 to 30 times more likely to develop leukemia during childhood than a child without it). Dr. Izraeli was then inspired to screen for gene mutations that could result in increased proliferation of cells. In collaboration with the iBFM Study Group, a European childhood leukemia consortium, 90 cases of Down syndrome leukemia from all over Europe were studied. A JAK2 mutation was found in 20% of these cases.

The discovery represents a unique biological phenomenon. "This is perhaps the first example of two very similar — but different — mutations that apparently do the same thing in a cellular protein. But they're associated with two completely different disorders, one that causes polycythemia in adults and the other that causes leukemia in children," says Dr. Izraeli.

"Those children at the highest risk for leukemia may be treated with inhibitors of JAK2," he says. "And because of the existence of polycythemia in adults, there are already drugs to fight polycythemia entering into trials as we speak. We will know in just a few years what these drugs are capable of."

An alternative to chemotherapy

Dr. Izraeli says the discovery offers "potential hope" to children who suffer from leukemia. "JAK2 inhibitors are not based on chemotherapy. The first experiences with these treatments show very few side effects. All that researchers need to do is to expand these clinical trials to children and adults with high-risk leukemia — and that can happen relatively quickly," says Dr. Izraeli.

Dr. Izraeli explains that typical chemotherapies for leukemia also have a high "toxicity cost." Children with leukemia are treated with 10 to 12 different chemotherapies over a period of two to three years. Some of them have long-term and irreversible damage, such as neurological, heart, bone problems and sterility. Researchers looking for viable alternatives may turn to Dr. Izraeli's research as a promising avenue for success.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Children Drug Delivery JAK2 childhood leukemia gene mutation leukemia

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>