Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DoesGood Cholesterol Increase Breast Cancer Risk?

10.10.2013
A protein receptor for the "good cholesterol," HDL, may help make breast cancer more aggressive and offer a new target for treating the disease.

High levels of high density lipoprotein (HDL), also known as the "good cholesterol," are thought to protect against heart disease. However, what’s good for one disease may not be good for another.

High levels of HDL have also been linked to increased breast cancer risks and to enhanced cancer aggressiveness in animal experiments. Now, a team of researchers led by Philippe Frank, Ph.D., a cancer biologist in the Department of Biochemistry and Molecular Biology at Thomas Jefferson University, has shown that an HDL receptor found on breast cancer cells may be responsible for this effect, proposing a new molecular target that could help treat the disease.

"If we can block the activity of the HDL receptor in breast cancer, we may be able to limit the harmful effects of HDL, while maintaining levels that are beneficial for blood vessels," says Dr. Frank. The work was published online September 24th in the journal Breast Cancer Research.

To study the effect of HDL on cancer cells at the molecular level, Dr. Frank and colleagues exposed breast cancer cell lines to HDL and noticed that signaling pathways involved in cancer progression were activated, and that the cells began to migrate in an experimental model mimicking metastasis.

The researchers then limited the expression of the HDL receptor called SR-BI in the cells using silencing RNA to reduce the receptor’s levels. In response, the activities of the signaling pathways that promote tumor progression were reduced. In addition, cells with fewer SR-BI receptors displayed reduced proliferation rates and migratory abilities than cells with normal SR-BI levels. Most importantly, reduced SR-BI levels were associated with reduced tumor formation in a mouse model of tumorigenesis. The researchers then blocked the SR-BI receptor in a breast cancer cell line with a drug called BLT-1 and noticed reduced proliferation and signaling via proteins linked to tumor formation.

This study supports the idea that HDL plays a role in the development of aggressive breast cancers and that inhibiting its function via SR-BI in breast cancer cells may stall cancer growth.

Additional studies will be needed to develop more specific drugs to inhibit SR-BI. "Also, we need to understand what levels of cholesterol are required by the tumor before trying to reduce or modify lipid levels in cancer patients," says Dr. Frank. “We hope this study will lead to the development of new drugs targeting SR-BI or cholesterol metabolism and eventually preventing tumor progression,” he adds.

The authors declare that they have no conflicts of interest.

Dr. Frank receives funding from The Susan G. Komen Foundation and the NIH.

For more information, contact Edyta Zielinska, (215) 955-5291, edyta.zielinska@jefferson.edu.

About Jefferson
Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU’s multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Edyta Zielinska | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>