Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DoesGood Cholesterol Increase Breast Cancer Risk?

A protein receptor for the "good cholesterol," HDL, may help make breast cancer more aggressive and offer a new target for treating the disease.

High levels of high density lipoprotein (HDL), also known as the "good cholesterol," are thought to protect against heart disease. However, what’s good for one disease may not be good for another.

High levels of HDL have also been linked to increased breast cancer risks and to enhanced cancer aggressiveness in animal experiments. Now, a team of researchers led by Philippe Frank, Ph.D., a cancer biologist in the Department of Biochemistry and Molecular Biology at Thomas Jefferson University, has shown that an HDL receptor found on breast cancer cells may be responsible for this effect, proposing a new molecular target that could help treat the disease.

"If we can block the activity of the HDL receptor in breast cancer, we may be able to limit the harmful effects of HDL, while maintaining levels that are beneficial for blood vessels," says Dr. Frank. The work was published online September 24th in the journal Breast Cancer Research.

To study the effect of HDL on cancer cells at the molecular level, Dr. Frank and colleagues exposed breast cancer cell lines to HDL and noticed that signaling pathways involved in cancer progression were activated, and that the cells began to migrate in an experimental model mimicking metastasis.

The researchers then limited the expression of the HDL receptor called SR-BI in the cells using silencing RNA to reduce the receptor’s levels. In response, the activities of the signaling pathways that promote tumor progression were reduced. In addition, cells with fewer SR-BI receptors displayed reduced proliferation rates and migratory abilities than cells with normal SR-BI levels. Most importantly, reduced SR-BI levels were associated with reduced tumor formation in a mouse model of tumorigenesis. The researchers then blocked the SR-BI receptor in a breast cancer cell line with a drug called BLT-1 and noticed reduced proliferation and signaling via proteins linked to tumor formation.

This study supports the idea that HDL plays a role in the development of aggressive breast cancers and that inhibiting its function via SR-BI in breast cancer cells may stall cancer growth.

Additional studies will be needed to develop more specific drugs to inhibit SR-BI. "Also, we need to understand what levels of cholesterol are required by the tumor before trying to reduce or modify lipid levels in cancer patients," says Dr. Frank. “We hope this study will lead to the development of new drugs targeting SR-BI or cholesterol metabolism and eventually preventing tumor progression,” he adds.

The authors declare that they have no conflicts of interest.

Dr. Frank receives funding from The Susan G. Komen Foundation and the NIH.

For more information, contact Edyta Zielinska, (215) 955-5291,

About Jefferson
Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU’s multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Edyta Zielinska | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Taming chaos: Calculating probability in complex systems

21.03.2018 | Physics and Astronomy

Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

21.03.2018 | Physics and Astronomy

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>