Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery offers insight into treating viral stomach flu

22.03.2012
Lethal Norovirus has become the second leading cause of death from gastroenteritis

Twenty million Americans get sick from norovirus each year according to data released last week by the Centers for Disease Control (CDC). Often called vomiting illness, it can spread rapidly on cruise ships, and in dormitories and hospitals.

Recent data from the CDC shows deaths from gastrointestinal infections have more than doubled and have become a particular threat to the elderly. The virus is shed in the stool of the infected individual, has a short incubation period and can spread quickly if proper hand washing and other measures are neglected.

While researchers say that vaccines for intestinal infections are among the most difficult to develop, a recent discovery may provide the critical information needed for success. “Sometimes atomic structure gives us clues on how viruses work and how to make better vaccines,” said Dr. Thomas Smith, principal investigator, at The Donald Danforth Plant Science Center whose recent article, Structural Basis for Broad Detection of Genogroup II Noroviruses by a Monoclonal Antibody That Binds to a Site Occluded in the Viral Particle, in the Journal of Virology was selected by the editors as an, “Article of Significant Interest, sighting the extreme norovirus flexibility suggested by these results may allow for broad antibody recognition, a finding of potential vaccine significance.”
Smith was part of a team of scientists lead by Dr. Peter D. Kwong, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH). Their research demonstrated that the virus has a structure unlike that of other viruses in that is has protein “lollipop” like structures that likely gives it more flexibility in attaching to cells. There are four genera of this virus family, the Caliciviruses, with the Sapoviruses and Noroviruses being the major cause of severe gastroenteritis in humans.

Dr. Smith and his colleagues discovered that because of the “lollipop” structure, antibodies against the norovirus may be able to bind to the more conserved underside of this floppy structure. This suggests that the extreme flexibility of the norovirus particle may allow for antibody recognition of protected surfaces that might otherwise be buried on intact particles.

This information will give researchers more insight on how to manipulate complex viruses as well as to design and develop better drugs to treat the maladies they cause. Rotovirus, a member of a different viral family but also causes severe gastro intestinal distress primarily in children, is being well controlled by the recent development of a vaccine.

Image caption: Shown here is the electron microscopy image reconstruction of mouse norovirus (MNV). The capsid is colored according to the distance from the center of the virion. The inner shell is colored red and yellow while the protruding domain (P domain) is colored in green and blue. The outer most tip (blue) is used by the virus to recognize the host cell and is where many antibodies bind. There is a yellow strand connecting the P domains to the shell of the virus that likely helps keep the P domains highly mobile and has been now observed in three different genera of this family of viruses.

About The Donald Danforth Plant Science Center

Founded in 1998, the Donald Danforth Plant Science Center is a not-for-profit research institute with a mission to improve the human condition through plant science. Research at the Danforth Center will feed the hungry and improve human health, preserve and renew the environment, and enhance the St. Louis region and Missouri as a world center for plant science. The Center’s work is funded through competitive grants and contract revenue from many sources, including the National Institutes of Health, U.S. Department of Energy, National Science Foundation, U.S. Department of Agriculture, U.S. Agency for International Development, the Bill & Melinda Gates and Howard G. Buffett Foundations.

The Donald Danforth Plant Science Center invites you to visit its website, www.danforthcenter.org, featuring interactive information on the Center scientists, news, education outreach and “Roots & Shoots” blog to help keep visitors up to date on the Center’s areas of research and programs.

For additional information, contact:

Karla Roeber, (314) 587-1231
kroeber@danforthcenter.org

Melanie Bernds, (314) 587-1647
mbernds@danforthcenter.org

Melanie Bernds | EurekAlert!
Further information:
http://www.danforthcenter.org

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>