Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery of a novel heart and gut disease


The genetic mutation involved would date back to 12th century Vikings

Physicians and researchers at CHU Sainte-Justine, Université de Montréal, CHU de Québec, Université Laval, and Hubrecht Institute have discovered a rare disease affecting both heart rate and intestinal movements. The disease, which has been named "Chronic Atrial Intestinal Dysrhythmia syndrome" (CAID), is a serious condition caused by a rare genetic mutation. This finding demonstrates that heart and guts rhythmic contractions are closely linked by a single gene in the human body, as shown in a study published on October 5, 2014 in Nature Genetics.

The research teams in Canada have also developed a diagnostic test for the CAID syndrome. "This test will identify with certainty the syndrome, which is characterized by the combined presence of various cardiac and intestinal symptoms," said Dr. Gregor Andelfinger, a pediatric cardiologist and researcher at CHU Sainte-Justine "The symptoms are severe, and treatments are very aggressive and invasive, added Dr. Philippe Chetaille, a pediatric cardiologist and researcher at the university hospital CHU de Québec." At cardiac level, patients suffer primarily from a slow heart rate, a condition which will require the implantation of a pacemaker for half of them, often as early as in their childhood. At digestive level, a chronic intestinal pseudo-obstruction will often force patients to feed exclusively intravenously. Furthermore, many of them will also have to undergo bowel surgery.

Discovery of the CAID Syndrome

By analysing the DNA of patients of French-Canadian origin and a patient of Scandinavian origin showing both the cardiac and the gastrointestinal condition, the researchers were able to identify a mutation in the gene SGOL1 that is common to all of patients showing both profiles. "To lift any doubts concerning the role of the identified mutation, we also made sure it was ruled out in people showing only one of the profiles," said Dr. Andelfinger. Similarly, Dr. Jeroen Bakkers, at Hubrecht Institute, in The Netherlands, who also collaborated to the project, studied zebrafish with the same gene mutation "The mutated fish showed the same cardiac symptoms as humans, which confirms the causal role played by SGOL1", he continued.

A Transatlantic Founder effect The research team traced back the genealogy of eight patients of French-Canadian origin using the Quebec population BALSAC historical data base. They were able to identify a common ancestry dating back to the 17th century, more precisely a founder couple married in France in 1620. Molecular genetic tests also proved that the identified French-Canadian and the Swedish mutations share the same origin, suggesting the existence of a founder effect and the major role played by migration of populations. According to the investigators' calculations, the genetic legacy would date back to the 12th century, then following the migration route of the Vikings from Scandinavia to Normandy, then that of the settlers who migrated to New France in the 17th century.

An Unsuspected Role for SGOL1

The researchers believe that the mutation of SGOL1 acts mechanistically to reduce the protection of specific nerve and muscle cells in the gut and the heart, causing them to age prematurely due to an accelerated replication cycle. Their findings suggest an unsuspected role for SGOL1 in the heart's ability to maintain its rhythm throughout life. The specific role played by the gene and the impact of its mutation will take center stage in future investigations of the research group. Along with physicians and patients, the group hopes their understanding of the disease will help them identify new avenues for treatments specifically targeting the underlying genetic and molecular causes.


About the Study

The study "Mutations in a novel because SGOL1 cohesinopathy affecting heart and gut rhythm" was published in Nature Genetics on October 5, 2014. Funding for this project provided by the FORGE Canada Consortium, the Canadian Institutes of Health Research, the Ontario Genomics Institute, Genome Quebec, Genome British Columbia, and André Foundation Nussia Aisenstadt, GO Foundation, Leducq Foundation and Association des pseudo-obstructions intestinales chroniques, France.

About the Researchers

Dr. Gregor Andelfinger, MD is a pediatric cardiologist at CHU Sainte-Justine, a researcher at Sainte-Justine University Hospital Research Center in the Fetomaternal and Neonatal Pathologies axis, and Associate Research Professor in the Department of Pediatrics at Université de Montréal. He also holds a Research Chair in cardiovascular genetics.

Dr. Philippe Chetaille, MD, MSc, is a pediatric cardiologist at CHU de Québec, an Associate Researcher at CHU de Québec Research Centre and a Full Associate Professor in the Department of Pediatrics at the Université Laval

Dr. Jeroen Bakkers, PhD, is a senior principle investigator of the Cardiac Development and Genetics group at the Hubrecht Institute in Utrecht, the Netherlands.

Interviews and Filming Opportunities

Researchers, physicians, patients and parents are available for interviews on request.

William Raillant-Clark | Eurek Alert!

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>