Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery could help diabetics and others with slow-to-heal wounds

A new discovery about the wound-healing process could lead to better treatments for diabetics and other patients who have wounds that are slow to heal.

Loyola University Health System researchers found that certain immune system cells slow the wound-healing process. Thus, it might be possible to improve healing by inactivating these immune system cells, said Elizabeth Kovacs, PhD, who heads the laboratory team that made the discovery.

The findings by Kovacs and colleagues are reported online, in advance of print, in the Journal of Surgical Research.

In the study, the immune system cells that impeded the healing process are called natural killer T (NKT) cells. NKT cells perform beneficial functions such as killing tumor cells and virus-infected cells. However, researchers discovered that NKT cells also migrate to wound sites and impede the healing process.

Kovacs and colleagues used an animal model to examine the effects of NKT cells on healing. Healing was significantly slower in normal mice that had NKT cells than it was in a special breed of mice that lacked NKT cells.

"We demonstrated that early wound closure was accelerated in the absence of NKT cells," Kovacs and colleagues wrote. "Importantly, we also made the novel observation that NKT cells themselves are a constituent of the early wound inflammatory infiltrate."

Certain conditions, such as diabetes and infections, can slow or prevent wounds from healing. The study found that NKT cells may be at least partially to blame. Researchers don't know how NKT cells slow healing. But they believe they may be able to inactivate NKT cells using an antibody. They are testing this prediction in a follow-up study.

Kovacs is a professor and vice chair of research in the Department of Surgery at Loyola University Chicago Stritch School of Medicine. She also is director of research of Loyola's Burn & Shock Trauma Institute.

Co-authors of the study are Jessica Palmer, Julia Tulley, Dr. John Speicher, Douglas Faunce, PhD, first author Dr. David Schneider and Dr. Richard Gamelli. Schneider is a resident at Loyola and Gamelli is dean of the Stritch School of Medicine and director of the Burn & Shock Trauma Institute.

The study was supported by the National Institutes of Health (NIH) and by the Ralph and Marion C. Falk Medical Research Trust.

Scott Somers, Ph.D., who manages wound healing research and training grants supported by the NIH's National Institute of General Medical Sciences, said, "Beyond the novel finding of a fundamental mechanism controlling wound healing, this work also highlights the contributions of physician-scientists like Dr. Schneider, a surgical resident who is training to do hypothesis-based, cutting-edge scientific investigation."

Jim Ritter | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>