Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could help diabetics and others with slow-to-heal wounds

19.04.2010
A new discovery about the wound-healing process could lead to better treatments for diabetics and other patients who have wounds that are slow to heal.

Loyola University Health System researchers found that certain immune system cells slow the wound-healing process. Thus, it might be possible to improve healing by inactivating these immune system cells, said Elizabeth Kovacs, PhD, who heads the laboratory team that made the discovery.

The findings by Kovacs and colleagues are reported online, in advance of print, in the Journal of Surgical Research.

In the study, the immune system cells that impeded the healing process are called natural killer T (NKT) cells. NKT cells perform beneficial functions such as killing tumor cells and virus-infected cells. However, researchers discovered that NKT cells also migrate to wound sites and impede the healing process.

Kovacs and colleagues used an animal model to examine the effects of NKT cells on healing. Healing was significantly slower in normal mice that had NKT cells than it was in a special breed of mice that lacked NKT cells.

"We demonstrated that early wound closure was accelerated in the absence of NKT cells," Kovacs and colleagues wrote. "Importantly, we also made the novel observation that NKT cells themselves are a constituent of the early wound inflammatory infiltrate."

Certain conditions, such as diabetes and infections, can slow or prevent wounds from healing. The study found that NKT cells may be at least partially to blame. Researchers don't know how NKT cells slow healing. But they believe they may be able to inactivate NKT cells using an antibody. They are testing this prediction in a follow-up study.

Kovacs is a professor and vice chair of research in the Department of Surgery at Loyola University Chicago Stritch School of Medicine. She also is director of research of Loyola's Burn & Shock Trauma Institute.

Co-authors of the study are Jessica Palmer, Julia Tulley, Dr. John Speicher, Douglas Faunce, PhD, first author Dr. David Schneider and Dr. Richard Gamelli. Schneider is a resident at Loyola and Gamelli is dean of the Stritch School of Medicine and director of the Burn & Shock Trauma Institute.

The study was supported by the National Institutes of Health (NIH) and by the Ralph and Marion C. Falk Medical Research Trust.

Scott Somers, Ph.D., who manages wound healing research and training grants supported by the NIH's National Institute of General Medical Sciences, said, "Beyond the novel finding of a fundamental mechanism controlling wound healing, this work also highlights the contributions of physician-scientists like Dr. Schneider, a surgical resident who is training to do hypothesis-based, cutting-edge scientific investigation."

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>