Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dietary Intervention Reduces Stomach Problems for Diabetes Patients

07.10.2013
Many diabetes patients suffer from symptoms such as nausea, vomiting and lack of appetite. A doctoral thesis from the Sahlgrenska Academy shows that a diet consisting of foods that fall apart easily, for example boiled potatoes and fish gratin, can help alleviate the condition.

About 35 per cent of all diabetes patients suffer from gastroparesis, which is a medical condition where the stomach is partly paralysed. As a result of the paralysis, food remains in the stomach for a longer time than normal.

Researchers at the Sahlgrenska Academy, University of Gothenburg, have now shown that dietary modifications can reduce the patients’ symptoms.

In the study, which involved 56 diabetes patients with gastroparesis, the subjects who were put on a small particle diet (smaller than 2 mm in diameter) experienced significantly less severe gastrointestinal symptoms than those who ate a conventional diabetes diet, which tends to focus on large particle foods.

Small particle foods can be defined as food items that fall apart like a boiled potato when mashed with a fork. Examples include boiled, baked and mashed potatoes, fish gratin, meat loaf and thin soups.

Patients who were put on this type of diet for at least 20 weeks experienced considerably fewer gastrointestinal symptoms such as vomiting, nausea, regurgitation, inability to finish a meal, bloating and lack of appetite.

‘Eating and the resulting symptoms can be very anxiety producing for gastroparesis patients. The subjects who were put on a small-particle diet experienced reduced anxiety levels,’ says Eva Olausson, who is presenting the study as part of her doctoral thesis at the Sahlgrenska Academy.

The study shows that particle size is directly correlated with the process of gastric emptying: the patients who were put on the small particle diet showed the same rates of gastric emptying as the healthy control group.

They also displayed more normal blood sugar responses than those found for large particle meals.

‘A small particle diet probably leads to fewer hypoglycemic events, and the events that do occur become easier to manage. This is of tremendous value to the patients,’ says Olausson.

Olausson’s thesis also shows that a large particle meal can be used to identify patients with gastroparesis, allowing for faster initiation of treatment.

The scientists have also developed a new method to diagnose gastroparesis, where patients swallow special markers that can be easily followed through the gastrointestinal system by fluoroscopy.

‘These two methods are easily accessible and could help reduce the number of unknown gastroparesis cases, which in turn could help reduce the costs to both patients and society in the form of medical treatments and sick-listings,’ says Olausson.

The thesis titled Diagnosis & Dietary Intervention in Patients with Diabetic Gastroparesis was publicly defended on 20 September.

Contact:
Eva Olausson, doctoral student at the Institute of Medicine, Sahlgrenska Academy, University of Gothenburg

eva.a.olausson@vgregion.se

Supervisor: Prof. Magnus Simrén, Sahlgrenska Academy, University of Gothenburg; magnus.simren@medicine.gu.se

Weitere Informationen:
https://gupea.ub.gu.se/handle/2077/32950

Torsten Arpi | idw
Further information:
http://www.gu.se

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>