Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delivery system for gene therapy may help treat arthritis

15.05.2012
A DNA-covered submicroscopic bead used to deliver genes or drugs directly into cells to treat disease appears to have therapeutic value just by showing up, researchers report.

Within a few hours of injecting empty-handed DNA nanoparticles, Georgia Health Sciences University researchers were surprised to see increased expression of an enzyme that calms the immune response.

In an animal model of rheumatoid arthritis, the enhanced expression of indoleomine 2,3 dioxygenase, or IDO, significantly reduced the hallmark limb joint swelling and inflammation of this debilitating autoimmune disease, researchers report in the study featured on the cover of The Journal of Immunology.

"It's like pouring water on a fire," said Dr. Andrew L. Mellor, Director of the GHSU's Medical College of Georgia Immunotherapy Center and the study's corresponding author. "The fire is burning down the house, which in this case is the tissue normally required for your joints to work smoothly," Mellor said of the immune system's inexplicable attack on bone-cushioning cartilage. "When IDO levels are high, there is more water to control the fire."

Several delivery systems are used for gene therapy, which is used to treat conditions including cancer, HIV infection and Parkinson's disease. The new findings suggest the DNA nanoparticle technique has value as well for autoimmune diseases such as arthritis, type 1 diabetes and lupus. "We want to induce IDO because it protects healthy tissue from destruction by the immune system," Mellor said.

The researchers were exploring IDO's autoimmune treatment potential by inserting the human IDO gene into DNA nanoparticles. They hoped to enhance IDO expression in their arthritis model when Dr. Lei Huang, Assistant Research Scientist and the paper's first author, serendipitously found that the DNA nanoparticle itself produced the desired result. Exactly how and why is still being pursued. Early evidence suggests that immune cells called phagocytes, white blood cells that gobble up undesirables like bacteria and dying cells, start making more IDO in response to the DNA nanoparticle's arrival. "Phagocytes eat it and respond quickly to it and the effect we measure is IDO," Mellor said.

Dr. Tracy L. McGaha, GHSU immunologist and a co-author on the current study, recently discovered that similar cells also prevented development of systemic lupus erythematosus in mice.

Follow-up studies include documenting all cells that respond by producing more IDO. GHSU researchers already are working with biopolymer experts at the Massachusetts Institute of Technology, the University of California, Berkeley and the Georgia Institute of Technology to identify the optimal polymer.

The polymer used in the study is not biodegradable so the researchers need one that will eventually safely degrade in the body. Ideally, they'd also like it to target specific cells, such as those near inflamed joints, to minimize any potential ill effects.

"It's like a bead and you wrap the DNA around it," Mellor said of the polymer. While the DNA does not have to carry anything to get the desired response in this case, DNA itself is essential to make cells express IDO. To ensure that IDO expression was responsible for the improvements, they also performed experiments in mice given an IDO inhibitor in their drinking water and in mice genetically altered to not express IDO. "Without access to the IDO pathway, the therapy no longer works," Mellor said.

Drs. Andrew Mellor and David Munn reported in 1998 in the journal Science that the fetus expresses IDO to help avoid rejection by the mother's immune system. Subsequent studies have shown tumors also use IDO for protection and clinical trials are studying the tumor-fighting potential of an IDO inhibitor. On the flip side, there is evidence that increasing IDO expression can protect transplanted organs and counter autoimmune disease.

Mellor is the Bradley-Turner and Georgia Research Alliance Eminent Scholar in Molecular Immunogenetics at MCG. The research was funded by the Carlos and Marguerite Mason Trust and the National Institutes of Health and a patent is pending on the findings.

Toni Baker | EurekAlert!
Further information:
http://www.georgiahealth.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>