Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How dark chocolate may guard against brain injury from stroke

06.05.2010
Johns Hopkins researchers discover pathway in mice for epicatechin's apparent protective effect

Researchers at Johns Hopkins have discovered that a compound in dark chocolate may protect the brain after a stroke by increasing cellular signals already known to shield nerve cells from damage.

Ninety minutes after feeding mice a single modest dose of epicatechin, a compound found naturally in dark chocolate, the scientists induced an ischemic stroke by essentially cutting off blood supply to the animals' brains. They found that the animals that had preventively ingested the epicatechin suffered significantly less brain damage than the ones that had not been given the compound.

While most treatments against stroke in humans have to be given within a two- to three-hour time window to be effective, epicatechin appeared to limit further neuronal damage when given to mice 3.5 hours after a stroke. Given six hours after a stroke, however, the compound offered no protection to brain cells.

Sylvain Doré, Ph.D., associate professor of anesthesiology and critical care medicine and pharmacology and molecular sciences at the Johns Hopkins University School of Medicine, says his study suggests that epicatechin stimulates two previously well-established pathways known to shield nerve cells in the brain from damage. When the stroke hits, the brain is ready to protect itself because these pathways — Nrf2 and heme oxygenase 1 — are activated. In mice that selectively lacked activity in those pathways, the study found, epicatechin had no significant protective effect and their brain cells died after a stroke.

The study now appears online in the Journal of Cerebral Blood Flow and Metabolism.

Eventually, Doré says, he hopes his research into these pathways could lead to insights into limiting acute stroke damage and possibly protecting against chronic neurological degenerative conditions, such as Alzheimer's disease and other age-related cognitive disorders.

The amount of dark chocolate people would need to consume to benefit from its protective effects remains unclear, since Doré has not studied it in clinical trials. People shouldn't take this research as a free pass to go out and consume large amounts of chocolate, which is high in calories and fat. In fact, people should be reminded to eat a healthy diet with a variety of fruits and vegetables.

Scientists have been intrigued by the potential health benefits of epicatechin by studying the Kuna Indians, a remote population living on islands off the coast of Panama. The islands' residents had a low incidence of cardiovascular disease. Scientists who studied them found nothing striking in the genes and realized that when they moved away from Kuna, they were no longer protected from heart problems. Researchers soon discovered the reason was likely environmental: The residents of Kuna regularly drank a very bitter cocoa drink, with a consistency like molasses, instead of coffee or soda. The drink was high in the compound epicatechin, which is a flavanol, a flavanoid-related compound.

But Doré says his research suggests the amount needed could end up being quite small because the suspected beneficial mechanism is indirect. "Epicatechin itself may not be shielding brain cells from free radical damage directly, but instead, epicatechin, and its metabolites, may be prompting the cells to defend themselves," he suggests.

The epicatechin is needed to jump-start the protective pathway that is already present within the cells. "Even a small amount may be sufficient," Doré says.

Not all dark chocolates are created equally, he cautions. Some have more bioactive epicatechin than others.

"The epicatechin found in dark chocolate is extremely sensitive to changes in heat and light" he says. "In the process of making chocolate, you have to make sure you don't destroy it. Only few chocolates have the active ingredient. The fact that it says 'dark chocolate' is not sufficient."

The new study was supported by grants from the National Institutes of Health and the American Heart and Stroke Association.

Other Johns Hopkins researchers on the study include Zahoor A. Shah, Ph.D.; Rung-chi Li, Ph.D.; Abdullah S. Ahmad, Ph.D.; Thomas W. Kensler, Ph.D.; and Shyam Biswal, Ph.D.

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>