Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How dark chocolate may guard against brain injury from stroke

06.05.2010
Johns Hopkins researchers discover pathway in mice for epicatechin's apparent protective effect

Researchers at Johns Hopkins have discovered that a compound in dark chocolate may protect the brain after a stroke by increasing cellular signals already known to shield nerve cells from damage.

Ninety minutes after feeding mice a single modest dose of epicatechin, a compound found naturally in dark chocolate, the scientists induced an ischemic stroke by essentially cutting off blood supply to the animals' brains. They found that the animals that had preventively ingested the epicatechin suffered significantly less brain damage than the ones that had not been given the compound.

While most treatments against stroke in humans have to be given within a two- to three-hour time window to be effective, epicatechin appeared to limit further neuronal damage when given to mice 3.5 hours after a stroke. Given six hours after a stroke, however, the compound offered no protection to brain cells.

Sylvain Doré, Ph.D., associate professor of anesthesiology and critical care medicine and pharmacology and molecular sciences at the Johns Hopkins University School of Medicine, says his study suggests that epicatechin stimulates two previously well-established pathways known to shield nerve cells in the brain from damage. When the stroke hits, the brain is ready to protect itself because these pathways — Nrf2 and heme oxygenase 1 — are activated. In mice that selectively lacked activity in those pathways, the study found, epicatechin had no significant protective effect and their brain cells died after a stroke.

The study now appears online in the Journal of Cerebral Blood Flow and Metabolism.

Eventually, Doré says, he hopes his research into these pathways could lead to insights into limiting acute stroke damage and possibly protecting against chronic neurological degenerative conditions, such as Alzheimer's disease and other age-related cognitive disorders.

The amount of dark chocolate people would need to consume to benefit from its protective effects remains unclear, since Doré has not studied it in clinical trials. People shouldn't take this research as a free pass to go out and consume large amounts of chocolate, which is high in calories and fat. In fact, people should be reminded to eat a healthy diet with a variety of fruits and vegetables.

Scientists have been intrigued by the potential health benefits of epicatechin by studying the Kuna Indians, a remote population living on islands off the coast of Panama. The islands' residents had a low incidence of cardiovascular disease. Scientists who studied them found nothing striking in the genes and realized that when they moved away from Kuna, they were no longer protected from heart problems. Researchers soon discovered the reason was likely environmental: The residents of Kuna regularly drank a very bitter cocoa drink, with a consistency like molasses, instead of coffee or soda. The drink was high in the compound epicatechin, which is a flavanol, a flavanoid-related compound.

But Doré says his research suggests the amount needed could end up being quite small because the suspected beneficial mechanism is indirect. "Epicatechin itself may not be shielding brain cells from free radical damage directly, but instead, epicatechin, and its metabolites, may be prompting the cells to defend themselves," he suggests.

The epicatechin is needed to jump-start the protective pathway that is already present within the cells. "Even a small amount may be sufficient," Doré says.

Not all dark chocolates are created equally, he cautions. Some have more bioactive epicatechin than others.

"The epicatechin found in dark chocolate is extremely sensitive to changes in heat and light" he says. "In the process of making chocolate, you have to make sure you don't destroy it. Only few chocolates have the active ingredient. The fact that it says 'dark chocolate' is not sufficient."

The new study was supported by grants from the National Institutes of Health and the American Heart and Stroke Association.

Other Johns Hopkins researchers on the study include Zahoor A. Shah, Ph.D.; Rung-chi Li, Ph.D.; Abdullah S. Ahmad, Ph.D.; Thomas W. Kensler, Ph.D.; and Shyam Biswal, Ph.D.

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>