Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Customized Therapy for Breast Cancer Patients

06.06.2013
Researchers in the VPH-PRISM project develop new procedures to improve treatment of breast cancer using multidisciplinary image data.

Every tenth woman is afflicted with breast cancer during her lifetime.The diagnosis and treatment of a patient involves the collaboration of a wide range of specialists.

The broad range of software platforms for storage and visualization of medical imaging data used by radiologists, pathologists, oncologists, radiotherapists and surgeons, brings challenges for communication and data transfer between the platforms. Improved extraction and transfer of information between the platforms may support breast cancer diagnosis and therapy planning.

This is where the VPH-PRISM project comes into play. Eight research partners and one coordinating partner are developing novel software systems that intelligently connect medical data sets to allow innovative assistive functions. The researchers plan to combine image data generated by various diagnostic procedures (X-ray, MRI, tissue histology) for display in a single software application.
Their vision consists of systematically gathering and quantitatively combining the image information currently available from various disciplines. For the first time, this would permit a large number of microscopic and macroscopic tissue parameters to be correlated efficiently and precisely. This could provide important indicators, enabling clinicians to customize therapy planning for individual patients.

To realize this, researchers in the project intend to create an interactive database to connect images with other relevant information, such as a patient’s risk of hereditary disease and environmental factors. This database would allow development of more focused therapy for breast cancer patients in the future. The Fraunhofer Institute for Medical Image Computing MEVIS in Bremen has taken charge of the scientific coordination of the project and is responsible for developing significant sections of the required image analysis procedures.

Early detection and therapy for breast cancer typically involves multiple disciplines. Radiologists interpret X-ray and MRI scans of the patient breast, whereas pathologists use 40x magnification and higher to examine the spatial arrangement of single cells from breast tissue samples. Surgeons attempt to remove malignant tumors effectively while conserving as much healthy tissue as possible. Radiotherapists treat breast cancer with radiation, and oncologists decide which type of chemotherapy is expected to be most beneficial.

An important challenge is to increase the interconnectivity of the information technology systems of these different disciplines. Radiologists and pathologists often work in the same hospital with different IT systems, each partly optimized to display and manipulate only the specialists’ own image data. When experts from different fields discuss suitable therapies, different image storage systems may result in abbreviated data transfer possibilities. Interdisciplinary tumor board meetings, during which specialists discuss individual breast cancer cases, may benefit from increased interconnectivity of the different systems.

To improve this situation, VPH-PRISM partners are developing software for X-ray, MRI images, ultrasound, and histology from biopsies, to provide a unified display to spatially superimpose, measure, and manipulate these images. Especially helpful would be the ability to characterize the area surrounding a tumor more accurately. The project will aim to answer the questions: has this tissue changed to such a degree that it must be removed with the tumor during the operation, or can a more local excision, exposing the patient to a less invasive operation, be performed without the risk of recurrence?

To accomplish this, tissue sample pathology slides must be digitized. However, digitization generates large amounts of data, which pathologists can only partially inspect. To solve this, VPH-PRISM experts are also developing software that automatically preselects and preprocesses the data, thereby facilitating the work of the pathologist. If the venture is successful, experts estimate that digital pathology will promote a breakthrough in breast cancer care similar to the effect that the widespread introduction of mammography had on early detection that has occurred over the last 15 years.

The project will explore how a deep understanding of tissue microstructure, gleaned from histology, can aid interpretation of X-ray, MRI, and ultrasound images. Additionally challenging is the presentation of tissue sample images alongside MRI and X-ray images. Experts using computationally intensive algorithms must guarantee that multiple data sets fit perfectly together. Only in this manner can tissue parameters gathered using different scalings be spatially correlated and hence superimposed.

The goal is a software tool that supports clinicians when choosing therapy. Patient data should be grouped automatically according to shared criteria. This allows the software to provide clues for optimal chemotherapy, for instance, if a patient with particular tissue characteristics has been assigned to a particular group. This could prove useful for monitoring the progress of therapy more accurately: Is the tumor degenerating as quickly as expected when a patient undergoes a certain type of chemotherapy? If not, then the doctor could cease ineffective therapy in a timely fashion and provide the patient with alternative drugs.

About VPH-PRISM

VPH-PRISM stands for “Virtual Physiological Human: Personalized Predictive Breast Cancer Therapy Through Integrated Tissue Micro-Structure Modeling.” The project is financed by the EU with a sum of 3.7 million euro, beginning in March 2013 and ending in February 2016. The consortium is composed of nine partners from five countries, including research institutes, clinical breast centers, and Philips Research.
• EIBIR, European Institute for Biomedical Imaging Research, Vienna, Austria (project coordinator)
• Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany (scientific coordinator)
• Radboud University Nijmegen Medical Center, The Netherlands
• University College London, UK
• University of Dundee, UK
• University of Chicago, USA
• Medical University of Vienna, Austria
• Boca Raton Regional Hospital, USA
• Philips Research, Hamburg, Germany

Bianka Hofmann | idw
Further information:
http://www.mevis.fraunhofer.de
http://www.vphprism.eu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>