Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Model Shows U.S. Vulnerable to MDR-TB Epidemic

29.09.2010
While the U.S. has made great progress in the prevention and treatment of tuberculosis, the nation has become more susceptible to potential epidemics of multidrug-resistant tuberculosis (MDR-TB), according a study led by Johns Hopkins researchers.

Computer simulations show that as TB prevalence falls, the risk for more extensive MDR-TB increases. In addition, the simulation also showed that higher detection of TB cases without proper treatment of cases also increased risk. The study findings are published in the September 22 edition of the journal PLoS ONE. An interactive TB computer simulation used by the research team is available at mdr.tbtools.org.

MDR-TB is a form of tuberculosis that is resistant to at least two of the primary antibiotics used to treat the disease. The World Health Organization estimates that MDR-TB affects between 0.5 and 2 million people each year worldwide, but there were only 111 cases reported in the U.S. in 2006.

For the analysis, the researchers developed a computer model to simulate the potential for MDR-TB epidemics. Eighty-one scenarios covering a 500-year period were created with varying levels of treatment quality, diagnosis accuracy, microbial fitness and the degree of immunogenicity of drug-susceptible TB.

According to the study, when 75 percent of active TB cases are detected, improving therapeutic compliance from 50 percent to 75 percent can reduce the probability of an epidemic from 45 percent to 15 percent. Paradoxically, improving the case-detection rate from 50 percent to 75 percent when compliance with directly observed treatment is constant at 75 percent increases the probability of MDR-TB epidemics from 3 percent to 45 percent.

“The ability of MDR-TB to spread depends on the prevalence of drug-susceptible TB,” said David Bishai, MD, PhD, MPH, senior author of the study and associate professor in the departments of Population, Family and Reproductive Health and International Health at the Johns Hopkins Bloomberg School of Public Health. “The most successful approach to reduce this risk for MDR-TB epidemics in the U.S. would be to ensure that populations around the world combine high rates of case findings that are tightly coupled to high compliance with directly observed drug therapy.”

The authors of “Heightened Vulnerability to MDR-TB Epidemics after Controlling Drug-Susceptible TB” include Jason D. Bishai, an undergraduate student at Stanford University and William R. Bishai, MD, PHD, professor with the Johns Hopkins School of Medicine and co-director of the Johns Hopkins Center for Tuberculosis Research.

The research was funded in part by an award to Jason Bishai from the Robert Wood Johnson Foundation Young Epidemiology Scholars Contest and by NIH grant 5R01AI079590-03.

Tim Parsons | Newswise Science News
Further information:
http://www.jhsph.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>