Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Model Shows U.S. Vulnerable to MDR-TB Epidemic

29.09.2010
While the U.S. has made great progress in the prevention and treatment of tuberculosis, the nation has become more susceptible to potential epidemics of multidrug-resistant tuberculosis (MDR-TB), according a study led by Johns Hopkins researchers.

Computer simulations show that as TB prevalence falls, the risk for more extensive MDR-TB increases. In addition, the simulation also showed that higher detection of TB cases without proper treatment of cases also increased risk. The study findings are published in the September 22 edition of the journal PLoS ONE. An interactive TB computer simulation used by the research team is available at mdr.tbtools.org.

MDR-TB is a form of tuberculosis that is resistant to at least two of the primary antibiotics used to treat the disease. The World Health Organization estimates that MDR-TB affects between 0.5 and 2 million people each year worldwide, but there were only 111 cases reported in the U.S. in 2006.

For the analysis, the researchers developed a computer model to simulate the potential for MDR-TB epidemics. Eighty-one scenarios covering a 500-year period were created with varying levels of treatment quality, diagnosis accuracy, microbial fitness and the degree of immunogenicity of drug-susceptible TB.

According to the study, when 75 percent of active TB cases are detected, improving therapeutic compliance from 50 percent to 75 percent can reduce the probability of an epidemic from 45 percent to 15 percent. Paradoxically, improving the case-detection rate from 50 percent to 75 percent when compliance with directly observed treatment is constant at 75 percent increases the probability of MDR-TB epidemics from 3 percent to 45 percent.

“The ability of MDR-TB to spread depends on the prevalence of drug-susceptible TB,” said David Bishai, MD, PhD, MPH, senior author of the study and associate professor in the departments of Population, Family and Reproductive Health and International Health at the Johns Hopkins Bloomberg School of Public Health. “The most successful approach to reduce this risk for MDR-TB epidemics in the U.S. would be to ensure that populations around the world combine high rates of case findings that are tightly coupled to high compliance with directly observed drug therapy.”

The authors of “Heightened Vulnerability to MDR-TB Epidemics after Controlling Drug-Susceptible TB” include Jason D. Bishai, an undergraduate student at Stanford University and William R. Bishai, MD, PHD, professor with the Johns Hopkins School of Medicine and co-director of the Johns Hopkins Center for Tuberculosis Research.

The research was funded in part by an award to Jason Bishai from the Robert Wood Johnson Foundation Young Epidemiology Scholars Contest and by NIH grant 5R01AI079590-03.

Tim Parsons | Newswise Science News
Further information:
http://www.jhsph.edu

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>