Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cocktail boosts immune cells in fighting cancer

07.12.2012
Fighting cancer using the body's own defense system is a promising treatment approach. Immune therapies have even become clinical routine in treating a few cancers such as malignant melanoma and prostate cancer.

Natural killer cells (or NK cells) are considered to be particularly suitable weapons against cancer. They are part of the innate immune system and respond to a wide range of cancer cells of diverse origin. Moreover, NK cells also kill tumor cells that have lost a specific target and go unnoticed by other immune cells.

"The big problem in using NK cells for therapy is their rapid loss of activity, hence their aggressiveness," says Dr. Adelheid Cerwenka. Together with her team at the German Cancer Research Center (DKFZ), Cerwenka is trying to ¬develop cancer therapies based on NK cells. "Although there are good treatment results for certain types of blood cancer, ¬NK cells have been clinically effective in fighting solid tumors only in a few cases," the immunologist explains.

Cerwenka's team has now been the first to enhance the NK cells' deadly potential in mice using a cocktail of three different immune mediators (interleukins 12, 15, and 18). NK cells that were activated in the culture dish and then injected into cancerous mice significantly slowed down tumor growth. The animals survived significantly longer and in one quarter of animals the tumors even regressed completely. By contrast, NK cells without prior treatment were ineffective.

The NK cells pretreated with the cocktail initially multiplied strongly in the mice. The researchers found it particularly remarkable that the NK cells appear to be re-stimulated by other immune cells in the bodies of the affected mice and were thus kept in an active state. Even after three months, the DKFZ immunologists still found active, functional NK cells in mice, even after the tumors had already been rejected. "We previously thought immunological memory exists only in cells of the adaptive immune system," says Cerwenka.

However, NK cells were only able to let tumors shrink if the mice had undergone prior radiation treatment. The scientists found a lot more NK cells at their site of action in tumor tissue in irradiated mice than in control animals. Cerwenka and colleagues do not yet know the precise molecular reason for this observation. "The good thing is that we might be able to¬ achieve this effect in a potential clinical application by combining the cocktail-treated NK cells with radiation therapy."

Cocktail-treated human NK cells also display all molecular signs of sustained activation in cell culture. Adelheid Cerwenka and her team have already started testing the effectiveness of killer cells in fighting human cancer cells. "We hope to advance the development of NK cell therapies against cancer with our novel approach," says Cerwenka.

Jing Ni, Matthias Miller, Ana Stojanovic, Natalio Garbi and Adelheid Cerwenka: Sustained effector function of IL-12/15/18 preactivated NK cells against established tumors. Journal of Experimental Medicine 2012, DOI: 10.1084/jem.20120944

*The body's defense system is made up of the innate and the adaptive immune systems. The innate system is responsible for immediate defense of the body. Cells of the innate system do not have specific receptors but respond to a broad spectrum of pathogens (using phagocytes, granulocytes) or transformed body cells (using NK cells). By contrast, T and B lymphocytes, which are part of the adaptive immune system, are equipped with highly specific receptor molecules directed against protein components of specific pathogens. If these long-lived cells, which form a sort of memory of the immune system, encounter this specific invader again, they first have to multiply before they can mount an effective defense. Therefore, several days pass before the adaptive immune defense is ready to fight the attack.

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 2,500 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg where promising approaches from cancer research are translated into the clinic. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The center is a member of the Helmholtz Association of National Research Centers. Ninety percent of its funding comes from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht Exploring a new frontier of cyber-physical systems: The human body
18.05.2015 | National Science Foundation

nachricht Soft-tissue engineering for hard-working cartilage
18.05.2015 | Technische Universitaet Muenchen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Analytical lamps monitor air pollution in cities

26.05.2015 | Ecology, The Environment and Conservation

DNA double helix does double duty in assembling arrays of nanoparticles

26.05.2015 | Life Sciences

Turn That Defect Upside Down

26.05.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>