Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cocktail boosts immune cells in fighting cancer

07.12.2012
Fighting cancer using the body's own defense system is a promising treatment approach. Immune therapies have even become clinical routine in treating a few cancers such as malignant melanoma and prostate cancer.

Natural killer cells (or NK cells) are considered to be particularly suitable weapons against cancer. They are part of the innate immune system and respond to a wide range of cancer cells of diverse origin. Moreover, NK cells also kill tumor cells that have lost a specific target and go unnoticed by other immune cells.

"The big problem in using NK cells for therapy is their rapid loss of activity, hence their aggressiveness," says Dr. Adelheid Cerwenka. Together with her team at the German Cancer Research Center (DKFZ), Cerwenka is trying to ¬develop cancer therapies based on NK cells. "Although there are good treatment results for certain types of blood cancer, ¬NK cells have been clinically effective in fighting solid tumors only in a few cases," the immunologist explains.

Cerwenka's team has now been the first to enhance the NK cells' deadly potential in mice using a cocktail of three different immune mediators (interleukins 12, 15, and 18). NK cells that were activated in the culture dish and then injected into cancerous mice significantly slowed down tumor growth. The animals survived significantly longer and in one quarter of animals the tumors even regressed completely. By contrast, NK cells without prior treatment were ineffective.

The NK cells pretreated with the cocktail initially multiplied strongly in the mice. The researchers found it particularly remarkable that the NK cells appear to be re-stimulated by other immune cells in the bodies of the affected mice and were thus kept in an active state. Even after three months, the DKFZ immunologists still found active, functional NK cells in mice, even after the tumors had already been rejected. "We previously thought immunological memory exists only in cells of the adaptive immune system," says Cerwenka.

However, NK cells were only able to let tumors shrink if the mice had undergone prior radiation treatment. The scientists found a lot more NK cells at their site of action in tumor tissue in irradiated mice than in control animals. Cerwenka and colleagues do not yet know the precise molecular reason for this observation. "The good thing is that we might be able to¬ achieve this effect in a potential clinical application by combining the cocktail-treated NK cells with radiation therapy."

Cocktail-treated human NK cells also display all molecular signs of sustained activation in cell culture. Adelheid Cerwenka and her team have already started testing the effectiveness of killer cells in fighting human cancer cells. "We hope to advance the development of NK cell therapies against cancer with our novel approach," says Cerwenka.

Jing Ni, Matthias Miller, Ana Stojanovic, Natalio Garbi and Adelheid Cerwenka: Sustained effector function of IL-12/15/18 preactivated NK cells against established tumors. Journal of Experimental Medicine 2012, DOI: 10.1084/jem.20120944

*The body's defense system is made up of the innate and the adaptive immune systems. The innate system is responsible for immediate defense of the body. Cells of the innate system do not have specific receptors but respond to a broad spectrum of pathogens (using phagocytes, granulocytes) or transformed body cells (using NK cells). By contrast, T and B lymphocytes, which are part of the adaptive immune system, are equipped with highly specific receptor molecules directed against protein components of specific pathogens. If these long-lived cells, which form a sort of memory of the immune system, encounter this specific invader again, they first have to multiply before they can mount an effective defense. Therefore, several days pass before the adaptive immune defense is ready to fight the attack.

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 2,500 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg where promising approaches from cancer research are translated into the clinic. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The center is a member of the Helmholtz Association of National Research Centers. Ninety percent of its funding comes from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>