Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cocktail boosts immune cells in fighting cancer

07.12.2012
Fighting cancer using the body's own defense system is a promising treatment approach. Immune therapies have even become clinical routine in treating a few cancers such as malignant melanoma and prostate cancer.

Natural killer cells (or NK cells) are considered to be particularly suitable weapons against cancer. They are part of the innate immune system and respond to a wide range of cancer cells of diverse origin. Moreover, NK cells also kill tumor cells that have lost a specific target and go unnoticed by other immune cells.

"The big problem in using NK cells for therapy is their rapid loss of activity, hence their aggressiveness," says Dr. Adelheid Cerwenka. Together with her team at the German Cancer Research Center (DKFZ), Cerwenka is trying to ¬develop cancer therapies based on NK cells. "Although there are good treatment results for certain types of blood cancer, ¬NK cells have been clinically effective in fighting solid tumors only in a few cases," the immunologist explains.

Cerwenka's team has now been the first to enhance the NK cells' deadly potential in mice using a cocktail of three different immune mediators (interleukins 12, 15, and 18). NK cells that were activated in the culture dish and then injected into cancerous mice significantly slowed down tumor growth. The animals survived significantly longer and in one quarter of animals the tumors even regressed completely. By contrast, NK cells without prior treatment were ineffective.

The NK cells pretreated with the cocktail initially multiplied strongly in the mice. The researchers found it particularly remarkable that the NK cells appear to be re-stimulated by other immune cells in the bodies of the affected mice and were thus kept in an active state. Even after three months, the DKFZ immunologists still found active, functional NK cells in mice, even after the tumors had already been rejected. "We previously thought immunological memory exists only in cells of the adaptive immune system," says Cerwenka.

However, NK cells were only able to let tumors shrink if the mice had undergone prior radiation treatment. The scientists found a lot more NK cells at their site of action in tumor tissue in irradiated mice than in control animals. Cerwenka and colleagues do not yet know the precise molecular reason for this observation. "The good thing is that we might be able to¬ achieve this effect in a potential clinical application by combining the cocktail-treated NK cells with radiation therapy."

Cocktail-treated human NK cells also display all molecular signs of sustained activation in cell culture. Adelheid Cerwenka and her team have already started testing the effectiveness of killer cells in fighting human cancer cells. "We hope to advance the development of NK cell therapies against cancer with our novel approach," says Cerwenka.

Jing Ni, Matthias Miller, Ana Stojanovic, Natalio Garbi and Adelheid Cerwenka: Sustained effector function of IL-12/15/18 preactivated NK cells against established tumors. Journal of Experimental Medicine 2012, DOI: 10.1084/jem.20120944

*The body's defense system is made up of the innate and the adaptive immune systems. The innate system is responsible for immediate defense of the body. Cells of the innate system do not have specific receptors but respond to a broad spectrum of pathogens (using phagocytes, granulocytes) or transformed body cells (using NK cells). By contrast, T and B lymphocytes, which are part of the adaptive immune system, are equipped with highly specific receptor molecules directed against protein components of specific pathogens. If these long-lived cells, which form a sort of memory of the immune system, encounter this specific invader again, they first have to multiply before they can mount an effective defense. Therefore, several days pass before the adaptive immune defense is ready to fight the attack.

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 2,500 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg where promising approaches from cancer research are translated into the clinic. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The center is a member of the Helmholtz Association of National Research Centers. Ninety percent of its funding comes from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>