Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clouds in the head

21.05.2013
A new model of the brain's thought processes explains the apparently chaotic activity patterns of individual neurons.

They do not correspond to a simple stimulus/response linkage, but arise from the networking of different neural circuits. Scientists funded by the Swiss National Science Foundation (SNSF) propose that the field of brain research should expand its focus.

Many brain researchers cannot see the forest for the trees. When they use electrodes to record the activity patterns of individual neurons, the patterns often appear chaotic and difficult to interpret. “But when you zoom out from looking at individual cells, and observe a large number of neurons instead, their global activity is very informative,” says Mattia Rigotti, a scientist at Columbia University and New York University who is supported by the SNSF and the Janggen-Pöhn-Stiftung. Publishing in “Nature” together with colleagues from the United States, he has shown that these difficult-to-interpret patterns in particular are especially important for complex brain functions.

What goes on in the heads of apes
The researchers have focussed their attention on the activity patterns of 237 neurons that had been recorded some years previously using electrodes implanted in the frontal lobes of two rhesus monkeys. At that time, the apes had been taught to recognise images of different objects on a screen. Around one third of the observed neurons demonstrated activity that Rigotti describes as “mixed selectivity”. A mixed selective neuron does not always respond to the same stimulus (the flowers or the sailing boat on the screen) in the same way. Rather, its response differs as it also takes account of the activity of other neurons. The cell adapts its response according to what else is going on in the ape’s brain.

Chaotic patterns revealed in context
Just as individual computers are networked to create concentrated processing and storage capacity in the field of Cloud Computing, links in the complex cognitive processes that take place in the prefrontal cortex play a key role. The greater the density of the network in the brain, in other words the greater the proportion of mixed selectivity in the activity patterns of the neurons, the better the apes were able to recall the images on the screen, as demonstrated by Rigotti in his analysis. Given that the brain and cognitive capabilities of rhesus monkeys are similar to those of humans, mixed selective neurons should also be important in our own brains. For him this is reason enough why brain research from now on should no longer be satisfied with just the simple activity patterns, but should also consider the apparently chaotic patterns that can only be revealed in context.

(*) Mattia Rigotti, Omri Barak, Melissa R. Warden, Xiao-Jing Wang, Nathaniel D. Daw, Earl K. Miller, and Stefano Fusi (2013). The importance of mixed selectivity in complex cognitive tasks. Nature online. doi: 10.1038/nature12160
(Manuscript available from the SNSF; e-mail: com@snf.ch)

Contact
Dr Mattia Rigotti
Center for Theoretical Neuroscience
Columbia University
New York, USA
Tel: +1 212 543 5965
E-mail: mr2666@columbia.edu

Media - Abteilung Kommunikation | idw
Further information:
http://www.snsf.ch

Further reports about: Cloud Computing SNSF clouds cognitive task neural circuit rhesus monkeys

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>