Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clearing the way for detecting pulmonary embolism

02.12.2009
Study shows molecular imaging technique is effective for diagnosing common, deadly lung problem

When it comes to diagnosing pulmonary embolism—a sudden blockage in the lung artery that could be deadly if not treated—which technique is the most effective?

Research published in the December issue of The Journal of Nuclear Medicine (JNM) suggests that a form of molecular imaging called single photon emission computed tomography (SPECT), when combined with low-dose CT, may provide an accurate diagnosis—allowing physicians to improve care for patients suffering from this often critical condition by using a diagnostic test that does not expose the patient to a great deal of radiation.

Pulmonary embolism is caused when a blood clot travels to a person's lungs from another location in the body, usually the legs. Symptoms may include shortness of breath, chest pain and coughing up blood. Anyone, including people who are otherwise healthy, can develop a blood clot and subsequent pulmonary embolism. Additionally, some patients show no symptoms, making pulmonary embolism particularly difficult to diagnosis. If left untreated, the mortality rate for patients with pulmonary embolism is approximately 30%. The risk of death can be reduced, however, with anti-clotting medications.

"Pulmonary embolism is very difficult to diagnose clinically," said J. Anthony Parker, M.D., Ph.D., a Beth Israel Deaconess Medical Center researcher who authored an invited perspective on the study in JNM. "Untreated, it has a high mortality rate. However, the treatment for pulmonary embolism also has serious side effects. As such, it is important not to over-treat pulmonary embolism. More accurate diagnosis, including both improved sensitivity and specificity, should result in better patient outcomes."

In the JNM study, titled "Detection of Pulmonary Embolism with Combined Ventilation–Perfusion SPECT and Low-Dose CT: Head-to-Head Comparison with Multidetector CT Angiography," researchers in Denmark tested the diagnostic accuracy of SPECT/CT imaging for pulmonary embolism against that of multidetector CT angiography (MDCT) alone, which is the current first-line imaging technique for diagnosing pulmonary embolism. Their study found that SPECT plus low-dose CT had a sensitivity of 97% and a specificity of 100%, whereas MDCT alone had a sensitivity of 68% and a specificity of 100%. Having an effective technique for diagnosing pulmonary embolism leads to more rapid and successful diagnosis.

In a related article also published in this month's JNM, researchers discuss the role of SPECT in imaging pulmonary embolism and how the technology has advanced. The authors of "SPECT in Acute Pulmonary Embolism" write that there is renewed interest in this modality as the initial imaging test for pulmonary embolism as a result of improved instrumentation and improved interpretation of lung scans, as well as concerns about high radiation exposure from CT angiography, particularly to the female breast. The article supports the conclusions found by the researchers in Denmark—SPECT/CT imaging may considerably improve the diagnosis of pulmonary embolism. The article also suggests that SPECT might be useful for follow-up examinations for determining therapy's response.

Co-authors of "Detection of Pulmonary Embolism with Combined Ventilation–Perfusion SPECT and Low-Dose CT: Head-to-Head Comparison with Multidetector CT Angiography" include: Henrik Gutte, Jann Mortensen, Camilla Bardram Johnbeck, Peter von der Reck, Ulrik Sloth Kristoffersen, and Andreas Kjær, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Henrik Gutte, Camilla Bardram Johnbeck, Ulrik Sloth Kristoffersen, Andreas Kjær, Cluster for Molecular Imaging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Claus Verner Jensen, Peter von der Recke, Department of Radiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Claus Leth Petersen, Department of Clinical Physiology and Nuclear Medicine, Frederiksberg Hospital, Frederiksberg, Denmark; and Jesper Kjærgaard, Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Co-authors of "SPECT in Acute Pulmonary Embolism" include: Paul D. Stein, Fadi Matta, Departments of Internal Medicine and Research and Advanced Studies Program, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Leonard M. Freeman, Departments of Nuclear Medicine and Diagnostic Radiology, Montefiore Medical Center, New York, New York; H. Dirk Sostman, Office of the Dean, Weill Cornell Medical College and Methodist Hospital, Houston, Texas; Lawrence R. Goodman, Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Pamela K. Woodard, Department of Radiology, Washington University, St. Louis, Missouri; David P. Naidich, Department of Radiology, New York University, New York, New York; Alexander Gottschalk, Department of Radiology, Michigan State University, East Lansing, Michigan; Dale L. Bailey, Department of Nuclear Medicine, University of Sydney, Sydney, Australia; Abdo Y. Yaekoub, Department of Internal Medicine, St. Joseph Mercy Oakland, Pontiac, Michigan; Charles A. Hales, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts; Russell D. Hull, Department of Medicine, University of Calgary, Calgary, Alberta, Canada; Kenneth V. Leeper, Jr., Department of Medicine, Emory University, Atlanta, Georgia; Victor F. Tapson, Department of Medicine, Duke University, Durham, North Carolina; and John G. Weg, Department of Medicine, University of Michigan, Ann Arbor, Michigan.

Credentialed media: To obtain a copy of this article—and online access to The Journal of Nuclear Medicine—please contact Amy Shaw at (703) 652-6773 or ashaw@snm.org, or Jane Kollmer at (703) 326-1184 or at jkollmer@snm.org. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org. A subscription to the journal is an SNM member benefit.

About SNM—Advancing Molecular Imaging and Therapy

SNM is an international scientific and medical organization dedicated to raising public awareness about what molecular imaging is and how it can help provide patients with the best health care possible. SNM members specialize in molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated.

SNM's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snm.org.

Amy Shaw | EurekAlert!
Further information:
http://www.snm.org

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>