Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Clearing the way for detecting pulmonary embolism

Study shows molecular imaging technique is effective for diagnosing common, deadly lung problem

When it comes to diagnosing pulmonary embolism—a sudden blockage in the lung artery that could be deadly if not treated—which technique is the most effective?

Research published in the December issue of The Journal of Nuclear Medicine (JNM) suggests that a form of molecular imaging called single photon emission computed tomography (SPECT), when combined with low-dose CT, may provide an accurate diagnosis—allowing physicians to improve care for patients suffering from this often critical condition by using a diagnostic test that does not expose the patient to a great deal of radiation.

Pulmonary embolism is caused when a blood clot travels to a person's lungs from another location in the body, usually the legs. Symptoms may include shortness of breath, chest pain and coughing up blood. Anyone, including people who are otherwise healthy, can develop a blood clot and subsequent pulmonary embolism. Additionally, some patients show no symptoms, making pulmonary embolism particularly difficult to diagnosis. If left untreated, the mortality rate for patients with pulmonary embolism is approximately 30%. The risk of death can be reduced, however, with anti-clotting medications.

"Pulmonary embolism is very difficult to diagnose clinically," said J. Anthony Parker, M.D., Ph.D., a Beth Israel Deaconess Medical Center researcher who authored an invited perspective on the study in JNM. "Untreated, it has a high mortality rate. However, the treatment for pulmonary embolism also has serious side effects. As such, it is important not to over-treat pulmonary embolism. More accurate diagnosis, including both improved sensitivity and specificity, should result in better patient outcomes."

In the JNM study, titled "Detection of Pulmonary Embolism with Combined Ventilation–Perfusion SPECT and Low-Dose CT: Head-to-Head Comparison with Multidetector CT Angiography," researchers in Denmark tested the diagnostic accuracy of SPECT/CT imaging for pulmonary embolism against that of multidetector CT angiography (MDCT) alone, which is the current first-line imaging technique for diagnosing pulmonary embolism. Their study found that SPECT plus low-dose CT had a sensitivity of 97% and a specificity of 100%, whereas MDCT alone had a sensitivity of 68% and a specificity of 100%. Having an effective technique for diagnosing pulmonary embolism leads to more rapid and successful diagnosis.

In a related article also published in this month's JNM, researchers discuss the role of SPECT in imaging pulmonary embolism and how the technology has advanced. The authors of "SPECT in Acute Pulmonary Embolism" write that there is renewed interest in this modality as the initial imaging test for pulmonary embolism as a result of improved instrumentation and improved interpretation of lung scans, as well as concerns about high radiation exposure from CT angiography, particularly to the female breast. The article supports the conclusions found by the researchers in Denmark—SPECT/CT imaging may considerably improve the diagnosis of pulmonary embolism. The article also suggests that SPECT might be useful for follow-up examinations for determining therapy's response.

Co-authors of "Detection of Pulmonary Embolism with Combined Ventilation–Perfusion SPECT and Low-Dose CT: Head-to-Head Comparison with Multidetector CT Angiography" include: Henrik Gutte, Jann Mortensen, Camilla Bardram Johnbeck, Peter von der Reck, Ulrik Sloth Kristoffersen, and Andreas Kjær, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Henrik Gutte, Camilla Bardram Johnbeck, Ulrik Sloth Kristoffersen, Andreas Kjær, Cluster for Molecular Imaging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Claus Verner Jensen, Peter von der Recke, Department of Radiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Claus Leth Petersen, Department of Clinical Physiology and Nuclear Medicine, Frederiksberg Hospital, Frederiksberg, Denmark; and Jesper Kjærgaard, Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Co-authors of "SPECT in Acute Pulmonary Embolism" include: Paul D. Stein, Fadi Matta, Departments of Internal Medicine and Research and Advanced Studies Program, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Leonard M. Freeman, Departments of Nuclear Medicine and Diagnostic Radiology, Montefiore Medical Center, New York, New York; H. Dirk Sostman, Office of the Dean, Weill Cornell Medical College and Methodist Hospital, Houston, Texas; Lawrence R. Goodman, Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Pamela K. Woodard, Department of Radiology, Washington University, St. Louis, Missouri; David P. Naidich, Department of Radiology, New York University, New York, New York; Alexander Gottschalk, Department of Radiology, Michigan State University, East Lansing, Michigan; Dale L. Bailey, Department of Nuclear Medicine, University of Sydney, Sydney, Australia; Abdo Y. Yaekoub, Department of Internal Medicine, St. Joseph Mercy Oakland, Pontiac, Michigan; Charles A. Hales, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts; Russell D. Hull, Department of Medicine, University of Calgary, Calgary, Alberta, Canada; Kenneth V. Leeper, Jr., Department of Medicine, Emory University, Atlanta, Georgia; Victor F. Tapson, Department of Medicine, Duke University, Durham, North Carolina; and John G. Weg, Department of Medicine, University of Michigan, Ann Arbor, Michigan.

Credentialed media: To obtain a copy of this article—and online access to The Journal of Nuclear Medicine—please contact Amy Shaw at (703) 652-6773 or, or Jane Kollmer at (703) 326-1184 or at Current and past issues of The Journal of Nuclear Medicine can be found online at A subscription to the journal is an SNM member benefit.

About SNM—Advancing Molecular Imaging and Therapy

SNM is an international scientific and medical organization dedicated to raising public awareness about what molecular imaging is and how it can help provide patients with the best health care possible. SNM members specialize in molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated.

SNM's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit

Amy Shaw | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>