Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clearing the way for detecting pulmonary embolism

02.12.2009
Study shows molecular imaging technique is effective for diagnosing common, deadly lung problem

When it comes to diagnosing pulmonary embolism—a sudden blockage in the lung artery that could be deadly if not treated—which technique is the most effective?

Research published in the December issue of The Journal of Nuclear Medicine (JNM) suggests that a form of molecular imaging called single photon emission computed tomography (SPECT), when combined with low-dose CT, may provide an accurate diagnosis—allowing physicians to improve care for patients suffering from this often critical condition by using a diagnostic test that does not expose the patient to a great deal of radiation.

Pulmonary embolism is caused when a blood clot travels to a person's lungs from another location in the body, usually the legs. Symptoms may include shortness of breath, chest pain and coughing up blood. Anyone, including people who are otherwise healthy, can develop a blood clot and subsequent pulmonary embolism. Additionally, some patients show no symptoms, making pulmonary embolism particularly difficult to diagnosis. If left untreated, the mortality rate for patients with pulmonary embolism is approximately 30%. The risk of death can be reduced, however, with anti-clotting medications.

"Pulmonary embolism is very difficult to diagnose clinically," said J. Anthony Parker, M.D., Ph.D., a Beth Israel Deaconess Medical Center researcher who authored an invited perspective on the study in JNM. "Untreated, it has a high mortality rate. However, the treatment for pulmonary embolism also has serious side effects. As such, it is important not to over-treat pulmonary embolism. More accurate diagnosis, including both improved sensitivity and specificity, should result in better patient outcomes."

In the JNM study, titled "Detection of Pulmonary Embolism with Combined Ventilation–Perfusion SPECT and Low-Dose CT: Head-to-Head Comparison with Multidetector CT Angiography," researchers in Denmark tested the diagnostic accuracy of SPECT/CT imaging for pulmonary embolism against that of multidetector CT angiography (MDCT) alone, which is the current first-line imaging technique for diagnosing pulmonary embolism. Their study found that SPECT plus low-dose CT had a sensitivity of 97% and a specificity of 100%, whereas MDCT alone had a sensitivity of 68% and a specificity of 100%. Having an effective technique for diagnosing pulmonary embolism leads to more rapid and successful diagnosis.

In a related article also published in this month's JNM, researchers discuss the role of SPECT in imaging pulmonary embolism and how the technology has advanced. The authors of "SPECT in Acute Pulmonary Embolism" write that there is renewed interest in this modality as the initial imaging test for pulmonary embolism as a result of improved instrumentation and improved interpretation of lung scans, as well as concerns about high radiation exposure from CT angiography, particularly to the female breast. The article supports the conclusions found by the researchers in Denmark—SPECT/CT imaging may considerably improve the diagnosis of pulmonary embolism. The article also suggests that SPECT might be useful for follow-up examinations for determining therapy's response.

Co-authors of "Detection of Pulmonary Embolism with Combined Ventilation–Perfusion SPECT and Low-Dose CT: Head-to-Head Comparison with Multidetector CT Angiography" include: Henrik Gutte, Jann Mortensen, Camilla Bardram Johnbeck, Peter von der Reck, Ulrik Sloth Kristoffersen, and Andreas Kjær, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Henrik Gutte, Camilla Bardram Johnbeck, Ulrik Sloth Kristoffersen, Andreas Kjær, Cluster for Molecular Imaging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Claus Verner Jensen, Peter von der Recke, Department of Radiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Claus Leth Petersen, Department of Clinical Physiology and Nuclear Medicine, Frederiksberg Hospital, Frederiksberg, Denmark; and Jesper Kjærgaard, Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Co-authors of "SPECT in Acute Pulmonary Embolism" include: Paul D. Stein, Fadi Matta, Departments of Internal Medicine and Research and Advanced Studies Program, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Leonard M. Freeman, Departments of Nuclear Medicine and Diagnostic Radiology, Montefiore Medical Center, New York, New York; H. Dirk Sostman, Office of the Dean, Weill Cornell Medical College and Methodist Hospital, Houston, Texas; Lawrence R. Goodman, Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Pamela K. Woodard, Department of Radiology, Washington University, St. Louis, Missouri; David P. Naidich, Department of Radiology, New York University, New York, New York; Alexander Gottschalk, Department of Radiology, Michigan State University, East Lansing, Michigan; Dale L. Bailey, Department of Nuclear Medicine, University of Sydney, Sydney, Australia; Abdo Y. Yaekoub, Department of Internal Medicine, St. Joseph Mercy Oakland, Pontiac, Michigan; Charles A. Hales, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts; Russell D. Hull, Department of Medicine, University of Calgary, Calgary, Alberta, Canada; Kenneth V. Leeper, Jr., Department of Medicine, Emory University, Atlanta, Georgia; Victor F. Tapson, Department of Medicine, Duke University, Durham, North Carolina; and John G. Weg, Department of Medicine, University of Michigan, Ann Arbor, Michigan.

Credentialed media: To obtain a copy of this article—and online access to The Journal of Nuclear Medicine—please contact Amy Shaw at (703) 652-6773 or ashaw@snm.org, or Jane Kollmer at (703) 326-1184 or at jkollmer@snm.org. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org. A subscription to the journal is an SNM member benefit.

About SNM—Advancing Molecular Imaging and Therapy

SNM is an international scientific and medical organization dedicated to raising public awareness about what molecular imaging is and how it can help provide patients with the best health care possible. SNM members specialize in molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated.

SNM's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snm.org.

Amy Shaw | EurekAlert!
Further information:
http://www.snm.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>