Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CIMH: Increased genetic load for schizophrenia identified in treatment

04.06.2014

Can medication efficacy be predicted in schizophrenia patients?

This question is the focus of an international research consortium (CRESTAR), in collaboration with scientists from the CIMH. Among others the researchers aimed to elucidate whether medication efficacy in schizophrenia can be predicted by attributes that can be assessed prior to treatment initiation. First results indicate that medication will be less effective in patients who carry more risk genes for schizophrenia. The study has now been published in the scientific journal Molecular Psychiatry.

Schizophrenia is a major psychiatric disorder, often characterized by a chronic progression in symptoms. This in turn leads to pronounced psychosocial impairment and the requirement for permanent care.
At present, psychiatrists are unable to predict which medication will be effective in a given schizophrenia patient.

The EU-funded CRESTAR project (http://www.crestar-project.eu) aims to investigate this research topic. A particular focus of its research work is a highly potent antipsychotic medication, Clozapine, which has been available since decades. Clozapine however, is only used after at least two trials of other medications have proven to be unsuccessful, as in a small number of cases life-threatening side-effects arise. This approach leads to a delay in effective treatment and a worsening of long-term prognosis.

The CRESTAR researchers are now investigating: First, whether clear indicators for the development of these adverse effects can be identified at an earlier time-point; and second whether clozapine will be effective in a given individual patient. Identification of these factors would allow the safe and effective initiation of clozapine during the early stages of illness.

CRESTAR researchers used information concerning many thousands of genetic markers to show that antipsychotic medication in general will be less effective in patients with a higher genetic load for schizophrenia. This genetic load is already present at birth. Despite the existence of familial schizophrenia, most schizophrenia patients have no family history of the disease. Thus a genetic test to determine the genetic load would represent a first step towards individualized therapy.

Until present psychiatric genetic research has generated few results of direct relevance to treatment, and individual prediction is still not possible. The results of the present study are only a small step into this direction. According to the first author of this recent CRESTAR study, Josef Frank, this is likely to change in the future, since through the development of new biostatistical methods, an increasing amount of information is being obtained concerning genetic variation across the whole genome.

Publication:
Identification of increased genetic risk scores for schizophrenia in treatment resistant patients.
Josef Frank, Maren Lang, Stephanie H Witt, Jana Strohmaier, Dan Rujescu, Sven Cichon, Franziska Degenhardt, Markus M Nöthen, David A Collier, Stephan Ripke, Dieter Naber & Marcella Rietschel. Molecular Psychiatry (2014). doi:10.1038/mp.2014.56

Contact at the CIMH:
Prof. Dr. Marcella Rietschel
Central Institute of Mental Health
Department of Genetic Epidemiology in Psychiatry
E-Mail: marcella.rietschel@zi-mannheim.de

Weitere Informationen:

http://www.zi-mannheim.de

Sigrid Wolff | idw - Informationsdienst Wissenschaft

Further reports about: CIMH Identification Molecular Psychiatry antipsychotic clozapine medication schizophrenia

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>