Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CIMH: Increased genetic load for schizophrenia identified in treatment

04.06.2014

Can medication efficacy be predicted in schizophrenia patients?

This question is the focus of an international research consortium (CRESTAR), in collaboration with scientists from the CIMH. Among others the researchers aimed to elucidate whether medication efficacy in schizophrenia can be predicted by attributes that can be assessed prior to treatment initiation. First results indicate that medication will be less effective in patients who carry more risk genes for schizophrenia. The study has now been published in the scientific journal Molecular Psychiatry.

Schizophrenia is a major psychiatric disorder, often characterized by a chronic progression in symptoms. This in turn leads to pronounced psychosocial impairment and the requirement for permanent care.
At present, psychiatrists are unable to predict which medication will be effective in a given schizophrenia patient.

The EU-funded CRESTAR project (http://www.crestar-project.eu) aims to investigate this research topic. A particular focus of its research work is a highly potent antipsychotic medication, Clozapine, which has been available since decades. Clozapine however, is only used after at least two trials of other medications have proven to be unsuccessful, as in a small number of cases life-threatening side-effects arise. This approach leads to a delay in effective treatment and a worsening of long-term prognosis.

The CRESTAR researchers are now investigating: First, whether clear indicators for the development of these adverse effects can be identified at an earlier time-point; and second whether clozapine will be effective in a given individual patient. Identification of these factors would allow the safe and effective initiation of clozapine during the early stages of illness.

CRESTAR researchers used information concerning many thousands of genetic markers to show that antipsychotic medication in general will be less effective in patients with a higher genetic load for schizophrenia. This genetic load is already present at birth. Despite the existence of familial schizophrenia, most schizophrenia patients have no family history of the disease. Thus a genetic test to determine the genetic load would represent a first step towards individualized therapy.

Until present psychiatric genetic research has generated few results of direct relevance to treatment, and individual prediction is still not possible. The results of the present study are only a small step into this direction. According to the first author of this recent CRESTAR study, Josef Frank, this is likely to change in the future, since through the development of new biostatistical methods, an increasing amount of information is being obtained concerning genetic variation across the whole genome.

Publication:
Identification of increased genetic risk scores for schizophrenia in treatment resistant patients.
Josef Frank, Maren Lang, Stephanie H Witt, Jana Strohmaier, Dan Rujescu, Sven Cichon, Franziska Degenhardt, Markus M Nöthen, David A Collier, Stephan Ripke, Dieter Naber & Marcella Rietschel. Molecular Psychiatry (2014). doi:10.1038/mp.2014.56

Contact at the CIMH:
Prof. Dr. Marcella Rietschel
Central Institute of Mental Health
Department of Genetic Epidemiology in Psychiatry
E-Mail: marcella.rietschel@zi-mannheim.de

Weitere Informationen:

http://www.zi-mannheim.de

Sigrid Wolff | idw - Informationsdienst Wissenschaft

Further reports about: CIMH Identification Molecular Psychiatry antipsychotic clozapine medication schizophrenia

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>