Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


What causes chronic bowel disease?

Europe-wide network for investigating irritable bowel syndrome headed by Heidelberg University Hospital/European Science Foundation provides 500,000 euros in funding for understanding causes, improving options for diagnosis and treatment

For the first time, scientists from 19 European countries have joined forces to form an interdisciplinary network for investigating the causes of irritable bowel syndrome and improving options for diagnosis and treatment.

Intestinal mucosa cells under the microscope: Serotonin receptors are stained green, nerve fibers are stained red.

Image: Heidelberg University Hospital

The European Science Foundation is funding the network, entitled GENIEUR (Genes in Irritable Bowel Syndrome Europe) and headed by biologist Dr. Beate Niesler of Heidelberg University Hospital’s Institute of Human Genetics, providing 500,000 euros over the next four years. Some five million patients in Germany suffer from symptoms including stomachache, constipation or diarrhea, frequently accompanied by other illnesses such as migraine, anxiety or depression, and often have these symptoms for years. To date, only symptoms of the disease can be treated.

Over 70 research groups are participating in the GENIEUR network. “GENIEUR is the world’s first large-scale interdisciplinary approach to investigating irritable bowel syndrome,” explained Niesler, head of the Neurogastrointestinal and Psychiatric Disorders Research Group at the Department of Molecular Human Genetics and spokesperson for the network. “Our goal is not just to identify characteristic changes in a patient’s genome, but to also test an array of possible interactions, for instance, the interactions between and lifestyle, diet, allergies, mental illness, pain syndromes, past infections or changes in intestinal flora,” Niesler said. It is also important to define uniform diagnostic criteria and subgroups of the syndrome, so that patients can benefit from a suitable treatment more quickly, she added. Besides gastroenterologists and human geneticists, the network also includes nutritionists, psychiatrists, immunologists, physiologists, neurobiologists, microbiologists, bioinformatic specialists and epidemiologists.

Certain changes in the genome promote irritable bowel syndrome
Irritable bowel syndrome (IBS) is one of the most common diseases of the intestinal tract. As much as 15 percent of Europe’s population suffers from the disease, which strongly impacts the patients’ overall well-being and quality of life. Depending on the type and severity of the symptoms, they are barely able to leave the house, cannot work or pursue their hobbies. Since little has been known about the causes of irritable bowel syndrome to date, diagnosis and treatment have been difficult. Currently, diagnosis is performed by ruling out other diseases, while for treatment trial and error is the only method available. Remedies that alleviate symptoms in some patients, such as special anti-inflammatory drugs, are completely ineffective for others, so that finding the right treatment can be a long and-drawn-out process that for some patients is not successful.

In 2008, the team headed by Niesler discovered that the nervous disturbances of the bowel can be exacerbated by changes in the genome. In patients who have IBS with diarrhea, the genetic blueprint for certain receptors in the bowel has often been changed. The receptors are located at the surface of the intestinal cells and bind the hormone serotonin. If they are changed, signal transmission in the bowel is disturbed. These research findings provided an initial approach for targeted drug therapy. “However, the receptors have changed in only some of the patients. We assume that several variants of this disease exist that can be attributed to different molecular causes in each case,” Niesler said.
New diagnostic criteria intended to simplify treatment

In order to detect these molecular factors, the teams are now establishing the first biobank with stool and tissue specimens from patients and healthy controls and are systematically collecting patient data. In so doing, they are aiming to identify reliable biomarkers and compile a catalog of criteria to precisely assign patients to individual subgroups. “If physicians can reliably assign their patients to a certain group, they can better predict which treatments are most likely to benefit the patients.” This may spare patients a long period of suffering,” Niesler explained. In addition, the teams plan to use genetic analyses of the subgroups to obtain information on the mechanism by which each variation of the syndrome evolves and on possible treatment approaches.

More information is available on the Web:

Participating centers in German with contact addresses:

Dr. Beate Niesler
Institute of Human Genetics, Department of Molecular Human Genetics
Heidelberg University Hospital
Tel.: +49 06221 56-35274

Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 11,000 employees, training and qualification is an important issue. Every year, around 550,000 patients are treated on an inpatient or outpatient basis in more than 50 clinics and departments with 2,000 beds. Currently, about 3,600 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:
Dr. Annette Tuffs
Head of Public Relations and Press Department
University Hospital of Heidelberg and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
D-69120 Heidelberg
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs(at)

Dr. Annette Tuffs | idw
Further information:

More articles from Health and Medicine:

nachricht Finding cannabinoids in hair does not prove cannabis consumption
07.10.2015 | Universitätsklinikum Freiburg

nachricht Older patients recover more slowly from concussion
06.10.2015 | Radiological Society of North America

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

NASA provides an infrared look at Hurricane Joaquin over time

08.10.2015 | Earth Sciences

Theoretical computer science provides answers to data privacy problem

08.10.2015 | Information Technology

Stellar desk in wave-like motion

08.10.2015 | Physics and Astronomy

More VideoLinks >>>