Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What causes chronic bowel disease?

06.11.2012
Europe-wide network for investigating irritable bowel syndrome headed by Heidelberg University Hospital/European Science Foundation provides 500,000 euros in funding for understanding causes, improving options for diagnosis and treatment

For the first time, scientists from 19 European countries have joined forces to form an interdisciplinary network for investigating the causes of irritable bowel syndrome and improving options for diagnosis and treatment.


Intestinal mucosa cells under the microscope: Serotonin receptors are stained green, nerve fibers are stained red.

Image: Heidelberg University Hospital

The European Science Foundation is funding the network, entitled GENIEUR (Genes in Irritable Bowel Syndrome Europe) and headed by biologist Dr. Beate Niesler of Heidelberg University Hospital’s Institute of Human Genetics, providing 500,000 euros over the next four years. Some five million patients in Germany suffer from symptoms including stomachache, constipation or diarrhea, frequently accompanied by other illnesses such as migraine, anxiety or depression, and often have these symptoms for years. To date, only symptoms of the disease can be treated.

Over 70 research groups are participating in the GENIEUR network. “GENIEUR is the world’s first large-scale interdisciplinary approach to investigating irritable bowel syndrome,” explained Niesler, head of the Neurogastrointestinal and Psychiatric Disorders Research Group at the Department of Molecular Human Genetics and spokesperson for the network. “Our goal is not just to identify characteristic changes in a patient’s genome, but to also test an array of possible interactions, for instance, the interactions between and lifestyle, diet, allergies, mental illness, pain syndromes, past infections or changes in intestinal flora,” Niesler said. It is also important to define uniform diagnostic criteria and subgroups of the syndrome, so that patients can benefit from a suitable treatment more quickly, she added. Besides gastroenterologists and human geneticists, the network also includes nutritionists, psychiatrists, immunologists, physiologists, neurobiologists, microbiologists, bioinformatic specialists and epidemiologists.

Certain changes in the genome promote irritable bowel syndrome
Irritable bowel syndrome (IBS) is one of the most common diseases of the intestinal tract. As much as 15 percent of Europe’s population suffers from the disease, which strongly impacts the patients’ overall well-being and quality of life. Depending on the type and severity of the symptoms, they are barely able to leave the house, cannot work or pursue their hobbies. Since little has been known about the causes of irritable bowel syndrome to date, diagnosis and treatment have been difficult. Currently, diagnosis is performed by ruling out other diseases, while for treatment trial and error is the only method available. Remedies that alleviate symptoms in some patients, such as special anti-inflammatory drugs, are completely ineffective for others, so that finding the right treatment can be a long and-drawn-out process that for some patients is not successful.

In 2008, the team headed by Niesler discovered that the nervous disturbances of the bowel can be exacerbated by changes in the genome. In patients who have IBS with diarrhea, the genetic blueprint for certain receptors in the bowel has often been changed. The receptors are located at the surface of the intestinal cells and bind the hormone serotonin. If they are changed, signal transmission in the bowel is disturbed. These research findings provided an initial approach for targeted drug therapy. “However, the receptors have changed in only some of the patients. We assume that several variants of this disease exist that can be attributed to different molecular causes in each case,” Niesler said.
New diagnostic criteria intended to simplify treatment

In order to detect these molecular factors, the teams are now establishing the first biobank with stool and tissue specimens from patients and healthy controls and are systematically collecting patient data. In so doing, they are aiming to identify reliable biomarkers and compile a catalog of criteria to precisely assign patients to individual subgroups. “If physicians can reliably assign their patients to a certain group, they can better predict which treatments are most likely to benefit the patients.” This may spare patients a long period of suffering,” Niesler explained. In addition, the teams plan to use genetic analyses of the subgroups to obtain information on the mechanism by which each variation of the syndrome evolves and on possible treatment approaches.

More information is available on the Web:
http://www.GENIEUR.eu

Participating centers in German with contact addresses:
http://www.RDS-net.uni-hd.de
http://www.ag-niesler.uni-hd.de

Contact
Dr. Beate Niesler
Institute of Human Genetics, Department of Molecular Human Genetics
Heidelberg University Hospital
Tel.: +49 06221 56-35274
Email: beate.niesler@med.uni-heidelberg.de

Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 11,000 employees, training and qualification is an important issue. Every year, around 550,000 patients are treated on an inpatient or outpatient basis in more than 50 clinics and departments with 2,000 beds. Currently, about 3,600 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:
Dr. Annette Tuffs
Head of Public Relations and Press Department
University Hospital of Heidelberg and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
D-69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Further information:
http://www.klinikum.uni-heidelberg.de/presse

More articles from Health and Medicine:

nachricht Real-time imaging of lung lesions during surgery helps localize tumors and improve precision
30.07.2015 | American Association for Thoracic Surgery

nachricht Experimental MERS vaccine shows promise in animal studies
29.07.2015 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Surprising similarity in fly and mouse motion vision

30.07.2015 | Life Sciences

Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets

30.07.2015 | Trade Fair News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>