Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


What causes chronic bowel disease?

Europe-wide network for investigating irritable bowel syndrome headed by Heidelberg University Hospital/European Science Foundation provides 500,000 euros in funding for understanding causes, improving options for diagnosis and treatment

For the first time, scientists from 19 European countries have joined forces to form an interdisciplinary network for investigating the causes of irritable bowel syndrome and improving options for diagnosis and treatment.

Intestinal mucosa cells under the microscope: Serotonin receptors are stained green, nerve fibers are stained red.

Image: Heidelberg University Hospital

The European Science Foundation is funding the network, entitled GENIEUR (Genes in Irritable Bowel Syndrome Europe) and headed by biologist Dr. Beate Niesler of Heidelberg University Hospital’s Institute of Human Genetics, providing 500,000 euros over the next four years. Some five million patients in Germany suffer from symptoms including stomachache, constipation or diarrhea, frequently accompanied by other illnesses such as migraine, anxiety or depression, and often have these symptoms for years. To date, only symptoms of the disease can be treated.

Over 70 research groups are participating in the GENIEUR network. “GENIEUR is the world’s first large-scale interdisciplinary approach to investigating irritable bowel syndrome,” explained Niesler, head of the Neurogastrointestinal and Psychiatric Disorders Research Group at the Department of Molecular Human Genetics and spokesperson for the network. “Our goal is not just to identify characteristic changes in a patient’s genome, but to also test an array of possible interactions, for instance, the interactions between and lifestyle, diet, allergies, mental illness, pain syndromes, past infections or changes in intestinal flora,” Niesler said. It is also important to define uniform diagnostic criteria and subgroups of the syndrome, so that patients can benefit from a suitable treatment more quickly, she added. Besides gastroenterologists and human geneticists, the network also includes nutritionists, psychiatrists, immunologists, physiologists, neurobiologists, microbiologists, bioinformatic specialists and epidemiologists.

Certain changes in the genome promote irritable bowel syndrome
Irritable bowel syndrome (IBS) is one of the most common diseases of the intestinal tract. As much as 15 percent of Europe’s population suffers from the disease, which strongly impacts the patients’ overall well-being and quality of life. Depending on the type and severity of the symptoms, they are barely able to leave the house, cannot work or pursue their hobbies. Since little has been known about the causes of irritable bowel syndrome to date, diagnosis and treatment have been difficult. Currently, diagnosis is performed by ruling out other diseases, while for treatment trial and error is the only method available. Remedies that alleviate symptoms in some patients, such as special anti-inflammatory drugs, are completely ineffective for others, so that finding the right treatment can be a long and-drawn-out process that for some patients is not successful.

In 2008, the team headed by Niesler discovered that the nervous disturbances of the bowel can be exacerbated by changes in the genome. In patients who have IBS with diarrhea, the genetic blueprint for certain receptors in the bowel has often been changed. The receptors are located at the surface of the intestinal cells and bind the hormone serotonin. If they are changed, signal transmission in the bowel is disturbed. These research findings provided an initial approach for targeted drug therapy. “However, the receptors have changed in only some of the patients. We assume that several variants of this disease exist that can be attributed to different molecular causes in each case,” Niesler said.
New diagnostic criteria intended to simplify treatment

In order to detect these molecular factors, the teams are now establishing the first biobank with stool and tissue specimens from patients and healthy controls and are systematically collecting patient data. In so doing, they are aiming to identify reliable biomarkers and compile a catalog of criteria to precisely assign patients to individual subgroups. “If physicians can reliably assign their patients to a certain group, they can better predict which treatments are most likely to benefit the patients.” This may spare patients a long period of suffering,” Niesler explained. In addition, the teams plan to use genetic analyses of the subgroups to obtain information on the mechanism by which each variation of the syndrome evolves and on possible treatment approaches.

More information is available on the Web:

Participating centers in German with contact addresses:

Dr. Beate Niesler
Institute of Human Genetics, Department of Molecular Human Genetics
Heidelberg University Hospital
Tel.: +49 06221 56-35274

Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 11,000 employees, training and qualification is an important issue. Every year, around 550,000 patients are treated on an inpatient or outpatient basis in more than 50 clinics and departments with 2,000 beds. Currently, about 3,600 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:
Dr. Annette Tuffs
Head of Public Relations and Press Department
University Hospital of Heidelberg and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
D-69120 Heidelberg
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs(at)

Dr. Annette Tuffs | idw
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>