Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chinese Bats Likely Source of SARS Virus, Researchers Report

31.10.2013
Direct transmission from bats to humans is ‘plausible’

Scientists say they’ve produced “the clearest evidence yet” the SARS virus originated in Chinese horseshoe bats and that direct bat-to-human transmission is “plausible.” The 2002 severe acute respiratory syndrome coronavirus (SARS-CoV) pandemic was one of the most significant public health events in recent history and researchers have been studying the virus to better understand how it is transmitted to prepare for future outbreaks.

An international research team—with participants in China, Australia, Singapore and the U.S.—has published its results in the journal Nature. “Our discovery that bats carrying SARS-CoV may be able to directly infect humans has enormous implications for public health control measures,” stated co-author Dr. Peter Daszak, president of the New York-based EcoHealth Alliance. Daszak is principal investigator on an NIH/National Science Foundation (NSF) Ecology and Evolution of Infectious Diseases (EEID) grant that provided some project funding.

The results are based on genetic analysis of samples taken over the course of a year from members of a horseshoe bat colony in Kunming, China. At least seven different strains of SL-CoVs were found to be circulating within the single group of bats. The findings highlight the importance of research programs targeting high-risk wildlife groups in emerging disease hotspots to predict, prepare for, and prevent pandemics, the researchers suggest.

“Our findings suggest that SARS-like coronaviruses are diverse and abundant in bats in Asia, and the potential for future spillover remains high,” Daszak noted. “If we add this to the recent finding that Middle East respiratory syndrome coronavirus (MERS-CoV) originates in Saudi Arabian bats, it’s strong evidence that bat coronaviruses remain a substantial global threat to public health.”

The EEID program is a joint NIH-NSF initiative that supports efforts to understand the underlying ecological and biological mechanisms that govern relationships between human-induced environmental changes and the emergence and transmission of infectious diseases. The highly interdisciplinary research projects supported apply both ecological and biomedical methods, and study how environmental events such as habitat alteration, biological invasion, climate change, and pollution alter the risks of emergence and transmission of viral, parasitic, and bacterial diseases in humans and other animals. Fogarty manages NIH participation in the venture and oversees the Daszak award (R01TW005869).

Additional U.S. government funding for the research came from the National Institute of Allergy and Infectious Diseases at NIH (R01AI079231), a Fogarty award supported with International Influenza Funds from the Department of Health and Human Services (R56TW009502) and the United States Agency for International Development (USAID) Emerging Pandemic Threats PREDICT initiative. The State Key Program for Basic Research and the National Natural Science Foundation of China also provided support.

Ann Puderbaugh
Fogarty International Center, NIH
ann.puderbaugh@nih.gov
301-402-8614
Anthony Ramos
EcoHealth Alliance
ramos@ecohealthalliance.org
1.212.380.4469 (direct)
1.646.413.3437 (mobile)

Ann Puderbaugh | Newswise
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>