Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chinese Bats Likely Source of SARS Virus, Researchers Report

31.10.2013
Direct transmission from bats to humans is ‘plausible’

Scientists say they’ve produced “the clearest evidence yet” the SARS virus originated in Chinese horseshoe bats and that direct bat-to-human transmission is “plausible.” The 2002 severe acute respiratory syndrome coronavirus (SARS-CoV) pandemic was one of the most significant public health events in recent history and researchers have been studying the virus to better understand how it is transmitted to prepare for future outbreaks.

An international research team—with participants in China, Australia, Singapore and the U.S.—has published its results in the journal Nature. “Our discovery that bats carrying SARS-CoV may be able to directly infect humans has enormous implications for public health control measures,” stated co-author Dr. Peter Daszak, president of the New York-based EcoHealth Alliance. Daszak is principal investigator on an NIH/National Science Foundation (NSF) Ecology and Evolution of Infectious Diseases (EEID) grant that provided some project funding.

The results are based on genetic analysis of samples taken over the course of a year from members of a horseshoe bat colony in Kunming, China. At least seven different strains of SL-CoVs were found to be circulating within the single group of bats. The findings highlight the importance of research programs targeting high-risk wildlife groups in emerging disease hotspots to predict, prepare for, and prevent pandemics, the researchers suggest.

“Our findings suggest that SARS-like coronaviruses are diverse and abundant in bats in Asia, and the potential for future spillover remains high,” Daszak noted. “If we add this to the recent finding that Middle East respiratory syndrome coronavirus (MERS-CoV) originates in Saudi Arabian bats, it’s strong evidence that bat coronaviruses remain a substantial global threat to public health.”

The EEID program is a joint NIH-NSF initiative that supports efforts to understand the underlying ecological and biological mechanisms that govern relationships between human-induced environmental changes and the emergence and transmission of infectious diseases. The highly interdisciplinary research projects supported apply both ecological and biomedical methods, and study how environmental events such as habitat alteration, biological invasion, climate change, and pollution alter the risks of emergence and transmission of viral, parasitic, and bacterial diseases in humans and other animals. Fogarty manages NIH participation in the venture and oversees the Daszak award (R01TW005869).

Additional U.S. government funding for the research came from the National Institute of Allergy and Infectious Diseases at NIH (R01AI079231), a Fogarty award supported with International Influenza Funds from the Department of Health and Human Services (R56TW009502) and the United States Agency for International Development (USAID) Emerging Pandemic Threats PREDICT initiative. The State Key Program for Basic Research and the National Natural Science Foundation of China also provided support.

Ann Puderbaugh
Fogarty International Center, NIH
ann.puderbaugh@nih.gov
301-402-8614
Anthony Ramos
EcoHealth Alliance
ramos@ecohealthalliance.org
1.212.380.4469 (direct)
1.646.413.3437 (mobile)

Ann Puderbaugh | Newswise
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>