Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chinese Bats Likely Source of SARS Virus, Researchers Report

Direct transmission from bats to humans is ‘plausible’

Scientists say they’ve produced “the clearest evidence yet” the SARS virus originated in Chinese horseshoe bats and that direct bat-to-human transmission is “plausible.” The 2002 severe acute respiratory syndrome coronavirus (SARS-CoV) pandemic was one of the most significant public health events in recent history and researchers have been studying the virus to better understand how it is transmitted to prepare for future outbreaks.

An international research team—with participants in China, Australia, Singapore and the U.S.—has published its results in the journal Nature. “Our discovery that bats carrying SARS-CoV may be able to directly infect humans has enormous implications for public health control measures,” stated co-author Dr. Peter Daszak, president of the New York-based EcoHealth Alliance. Daszak is principal investigator on an NIH/National Science Foundation (NSF) Ecology and Evolution of Infectious Diseases (EEID) grant that provided some project funding.

The results are based on genetic analysis of samples taken over the course of a year from members of a horseshoe bat colony in Kunming, China. At least seven different strains of SL-CoVs were found to be circulating within the single group of bats. The findings highlight the importance of research programs targeting high-risk wildlife groups in emerging disease hotspots to predict, prepare for, and prevent pandemics, the researchers suggest.

“Our findings suggest that SARS-like coronaviruses are diverse and abundant in bats in Asia, and the potential for future spillover remains high,” Daszak noted. “If we add this to the recent finding that Middle East respiratory syndrome coronavirus (MERS-CoV) originates in Saudi Arabian bats, it’s strong evidence that bat coronaviruses remain a substantial global threat to public health.”

The EEID program is a joint NIH-NSF initiative that supports efforts to understand the underlying ecological and biological mechanisms that govern relationships between human-induced environmental changes and the emergence and transmission of infectious diseases. The highly interdisciplinary research projects supported apply both ecological and biomedical methods, and study how environmental events such as habitat alteration, biological invasion, climate change, and pollution alter the risks of emergence and transmission of viral, parasitic, and bacterial diseases in humans and other animals. Fogarty manages NIH participation in the venture and oversees the Daszak award (R01TW005869).

Additional U.S. government funding for the research came from the National Institute of Allergy and Infectious Diseases at NIH (R01AI079231), a Fogarty award supported with International Influenza Funds from the Department of Health and Human Services (R56TW009502) and the United States Agency for International Development (USAID) Emerging Pandemic Threats PREDICT initiative. The State Key Program for Basic Research and the National Natural Science Foundation of China also provided support.

Ann Puderbaugh
Fogarty International Center, NIH
Anthony Ramos
EcoHealth Alliance
1.212.380.4469 (direct)
1.646.413.3437 (mobile)

Ann Puderbaugh | Newswise
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>