Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Childhood Dairy Intake May Improve Adolescent Bone Health

14.08.2008
Dairy is recognized as a key component of a healthy, balanced diet. However, until recently it was unclear how long-term dairy intake contributes to the many aspects of bone health in children, including bone density, bone mineral content, and bone area.

A new study soon to be published in The Journal of Pediatrics investigates the effect of childhood dairy intake on adolescent bone health.

Dr. Lynn Moore and colleagues from Boston University School of Medicine analyzed data from the Framingham Children’s Study in an effort to understand the relationship between childhood dairy intake and adolescent bone health. The researchers gathered information from 106 children, 3 to 5 years of age at the beginning of the study, over a 12-year period. The families enrolled in the study were given food diaries to complete for the child and were asked to record everything the child ate and drank for several days each year.

The researchers used these diaries, along with information from the United States Department of Agriculture, to calculate the children’s average daily intake of dairy and other foods. At the end of the 12-year period, the authors assessed the bone health of the now adolescent study participants. They found that the adolescents who had consumed 2 or more servings of dairy per day as children had higher levels of bone mineral content and bone density.

Even after adjusting for factors that affect normal bone development, including the child’s growth, body size, and activity level, the authors found that these adolescents’ average bone mineral content was 175 grams higher than the adolescents who had consumed less than 2 servings of dairy per day.

The researchers also evaluated the combined effects of dairy and other foods consumed by the study participants. According to Dr. Moore, “Children who consumed 2 or more servings of dairy and 4 ounces of meat or other nondairy protein had bone mineral contents over 300 grams higher than those children with lower intakes of both dairy and other proteins.” The study highlights the importance of dairy intake throughout childhood, and Dr. Moore points out that “dairy is a key source of proteins, calcium, and other micronutrients including phosphorus and vitamin D.” Parents can promote healthy bone development during adolescence by making dairy a regular part of their child’s diet.

The study is reported in “Effects of Average Childhood Dairy Intake on Adolescent Bone Health” by Lynn L. Moore, DSc, MPH, M. Loring Bradlee, MS, Di Gao, AS, Martha R. Singer, MPH, RD. The article appears in The Journal of Pediatrics, DOI: 10.1016/j/jpeds.2008.05.016, published by Elsevier.

The Journal of Pediatrics is a primary reference for the science and practice of pediatrics and its subspecialties. This authoritative resource of original, peer-reviewed articles oriented toward clinical practice helps physicians stay abreast of the latest and ever-changing developments in pediatric medicine. The Journal of Pediatrics is ranked 3rd out of 78 pediatric medical journals (2007 Journal Citation Reports, published by Thomson Reuters).

Brigid Huey | alfa
Further information:
http://www.elsevier.com
http://www.jpeds.com

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>