Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cedars-Sinai researchers target cancer stem cells in malignant brain tumors

07.01.2014
Approach aims to prevent brain cancer recurrence by attacking tumors at the source

Researchers at the Cedars-Sinai Maxine Dunitz Neurosurgical Institute and Department of Neurosurgery identified immune system targets on cancer stem cells – cells from which malignant brain tumors are believed to originate and regenerate – and created an experimental vaccine to attack them.

Results of laboratory and animal studies are published in the online edition of Stem Cells Translational Medicine, and will appear in the March 2014 print edition. A Phase I safety study in human volunteers with recurrent glioblastoma multiforme, the most common and aggressive brain tumor in adults, is underway.

Like normal stem cells, cancer stem cells have the ability to self-renew and generate new cells, but instead of producing healthy cells, they create cancer cells. In theory, if the cancer stem cells can be destroyed, a tumor may not be able to sustain itself, but if the cancer originators are not removed or destroyed, a tumor will continue to return despite the use of existing cancer-killing therapies.

The researchers identified certain fragments of a protein – CD133 – that is found on cancer stem cells of some brain tumors and other cancers. In the laboratory, they cultured the proteins with dendritic cells, the immune system's most powerful antigen-presenting cells, which are responsible for helping the immune system recognize and attack invaders.

Studies in lab mice showed that the resulting vaccine was able to stimulate an immune response against the CD133 proteins without causing side effects such as an autoimmune reaction against normal cells or organs.

"CD133 is one of several proteins made at high levels in the cancer stem cells of glioblastoma multiforme. Because this protein appears to be associated with resistance of the cancer stem cells to treatment with radiation or chemotherapy or both, we see it as an ideal target for immunotherapy. We have found at least two fragments of the protein that can be targeted to trigger an immune response to kill tumor cells. We don't know yet if the response would be strong enough to prevent a tumor from coming back, but we now have a human clinical trial underway to assess safety for further study," said John Yu, MD, vice chair of the Department of Neurosurgery, director of surgical neuro-oncology, medical director of the Brain Tumor Center and neurosurgical director of the Gamma Knife Program at Cedars-Sinai. He is senior author of the journal article.

With standard care, which includes surgery, radiation treatment and chemotherapy, median length of survival is 15 months for patients diagnosed with glioblastoma multiforme. Cedars-Sinai researchers have studied dendritic cell immunotherapy since 1997, with the first patient human clinical trial launched in 1998.

The dendritic cell vaccines are produced by the biotechnology company ImmunoCellular Therapeutics Ltd., which funded this study. Cedars-Sinai owns equity in the company, and certain rights in the vaccine technology and corresponding intellectual property have been exclusively licensed by Cedars-Sinai to ImmunoCellular Therapeutics.

Two members of the research team and authors of this article have ties to the company. Yu, senior author, owns stock in the company and is its founder, chief scientific officer and chair of the board of directors. James Bender, PhD, MPH, a co-author, is ImmunoCellular Therapeutics' vice president for product development and manufacturing.

Researchers from Torrey Pines Institute for Molecular Studies also participated in the study.

Citation: Stem Cells Translational Medicine, "Identification of novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitopes on CD133 for cancer stem cell immunotherapy," Available online 12/27/13. To appear in the March, 2014, print edition.

http://stemcellstm.alphamedpress.org/content/early/2013/12/27/sctm.2013-0135.1.abstract

Sandy Van | Cedars-Sinai News
Further information:
http://cedars-sinai.edu/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>