Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cardiac arrest resuscitation: Passive oxygen flow better than assisted ventilation

14.08.2009
New study from Arizona suggests assisted ventilation, as conventionally practiced in cardiac arrest rescue, may lower chances of survival, authors recommend a revised protocol developed at the University of Arizona College of Medicine

Arizona researchers have added another piece to the mounting body of evidence that suggests during resuscitation efforts to treat patients in cardiac arrest, "passive ventilation" significantly increases survival rates, compared to the widely practiced "assisted ventilation."

The study, published in an online edition of Annals of Emergency Medicine, compared the numbers of patients who had suffered a cardiac arrest outside a hospital setting and were resuscitated in the field by Emergency Medical Services personnel. Rescuers used either bag-valve-mask ventilation, which forces air into the patient's lungs, or facemasks with a continuous flow of oxygen, which work in a similar fashion to those carried on airplanes in case the cabin pressure drops.

Among the 1,019 adult out-of-hospital cardiac arrest patients in the analysis, 459 received passive ventilation and 560 received bag-valve-mask ventilation. Neurologically normal survival after witnessed cardiac arrest with a shockable heart rhythm was higher for the passive oxygen flow method (38.2 percent) than bag-valve-mask ventilation (25.8 percent).

"These results are strikingly similar to earlier observations from Wisconsin, where survival rates went up from 15 percent to 38 percent after paramedics abandoned the official guidelines for the modified protocol that we developed," says Gordon A. Ewy, MD, a co-author of the study and director of the Sarver Heart Center at The University of Arizona College of Medicine. The Sarver Heart Center's Resuscitation Research Group developed a modified protocol for treating out-of-hospital cardiac arrest called Cardiocerebral Resuscitation, as opposed to Cardiopulmonary Resuscitation, which should be reserved for respiratory arrest (such as near-drowning or drug overdose).

Under the new concept, first tested in Wisconsin, EMS personnel no longer intubated the patient for ventilation. Instead, they applied a facemask delivering a continuous, low-pressure flow of oxygen.

"Our findings provide compelling evidence that positive pressure ventilation is not optimal in the initial management of out-of-hospital cardiac arrest," says lead author Bentley Bobrow, MD, emergency physician at Maricopa Medical Center in Phoenix and associate professor of emergency medicine at the UA College of Medicine. "The work from our EMS providers in Arizona further questions the longstanding dogma of tracheal intubation and ventilation for cardiac arrest.

"We are most pleased that while we are helping to advance the science of resuscitation, we are saving more victims of cardiac arrest in Arizona than ever before," adds Dr. Bobrow, who also is the medical director for the Arizona Department of Health Services Bureau of Emergency Medical Services.

"This study reinforces our belief that survival of out-of-hospital cardiac arrest has more to do with circulating the blood through quality and uninterrupted chest compressions than with ventilation," Dr. Ewy adds.

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu
http://www.heart.arizona.edu

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>