Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer breakthrough to prevent heart failure and increase survival rates

10.02.2011
A breakthrough by scientists at Queen's University Belfast could help reduce heart failure in cancer patients around the world, and ultimately increase survival rates.

Scientists at Queen's Centre for Vision and Vascular Science have discovered the role of an enzyme which, when a patient receives chemotherapy, can cause life-threatening damage to the heart. This has, until now, restricted the amount of chemotherapy doses a patient can receive; but while protecting the heart, this dilutes the chemotherapy's effectiveness in destroying cancerous tumours.

By identifying the role of the enzyme - NADPH oxidase - work can now go ahead into making chemotherapy treatments more effective and reduce the toxic effects of cancer treatment on the heart.

Dr David Grieve, jointly leading on the research at Queen's School of Medicine, Dentistry and Biomedical Sciences said: "While chemotherapy drugs are highly effective in treating a wide range of tumours, they can also cause irreversible damage to the heart. This means that doctors are restricted in the doses they can administer to patients. In recent years, scientists have been searching for new drugs to prevent these side-effects.

"Although we have known about the NADPH oxidase enzyme for many years, until now, we were not aware of its crucial role in causing heart damage associated with chemotherapy. Our research findings hold clear potential for the creation of new drugs to block the action of the enzyme, which could significantly reduce heart damage in cancer patients.

"Ultimately, this could allow for the safer use of higher doses of chemotherapy drugs and make the treatment more effective against tumours. Despite improved treatments, cancer is currently responsible for 25 per cent of all mortality in the western world. By reducing the risk of heart failure associated with chemotherapy, patient survival rates could be significantly increased."

Scientists at Queen's are now concentrating their efforts on further studies to define the precise role of NADPH oxidase in the development of heart failure associated with cancer therapies. It is hoped that these may lead to the development of a drug which would have the potential to save lives among cancer patients.

The research by Dr David Grieve and Professor Barbara McDermott was funded by the British Heart Foundation in Northern Ireland and published in leading international journal, Cancer Research.

Media inquiries to Anne-Marie Clarke at Queen's University Communications Office on 00 44 (0)28 9097 5320 or email anne-marie.clarke@qub.ac.uk

Notes to Editors

1. Dr David Grieve is available for interview. Interview bids and photo requests to Anne-Marie Clarke on 00 44 (0)28 9097 5320 or email anne-marie.clarke@qub.ac.uk

2. This research was published in the leading international journal, Cancer Research (Volume 70 (22); pages 9287).

3. Enzymes are proteins that catalyse (increase or decrease the rates of) chemical reactions.

4. Around 7 per cent of cancer patients treated with the upper limit dosage of chemotherapy agent Doxorubicin currently develop heart failure. Doxorubicin is commonly used in the treatment of a wide range of cancers. Its most serious adverse effect is life-threatening heart damage. The drug is administered intravenously, in the form of hydrochloride salt. The drug was originally isolated in the 1950s from bacteria found in soil samples taken from Castel del Monte, an Italian castle.

5. The Centre for Vision & Vascular Science is one of the four Research Centres within the newly reconfigured School of Medicine, Dentistry and Biomedical Sciences. The Centre's research is multidisciplinary in nature, with an integrated mixture of approaches ranging from basic cell and molecular biology, pathophysiology of disease, genetic analysis, protein chemistry, patient-based investigation and clinical trials (www.qub.ac.uk/cvvs)

6. Dr David Grieve: After being awarded an honours degree at University of Dundee in 1995, David moved to The Royal Veterinary College in London where he completed his PhD thesis on "The role of dietary lipoproteins in the initiation of atherosclerosis" in 1998. He was then appointed as a post-doctoral scientist by Professor Ajay Shah in the newly established Cardiovascular Division at King's College London, where he worked for almost 7 years and received comprehensive training in cardiovascular research. In 2005, he became a Lecturer in Cardiovascular Physiology within the School of Medicine, Dentistry and Biomedical Sciences at Queen's University Belfast where he has now established his own research group. He has secured over £1 million in competitive grant funding, £800,000 of which has been as Principal Investigator. He has published over 30 peer-reviewed papers in the top journals in his subject area, including Circulation, Circulation Research, Journal of the American College of Cardiology and European Heart Journal. These publications carry an average impact factor of 6.5 and have received over 1200 citations. He has published over 60 peer-reviewed conference abstracts which have been largely presented at the main cardiovascular research meetings such as the American Heart Association and International Society for Heart Research (ISHR). His main research interest is focussed on the mechanisms underlying the development and progression of cardiovascular remodeling and dysfunction, with a particular interest in oxidative stress, diabetes, and the novel actions of incretin peptide hormones.

Anne-Marie Clarke | EurekAlert!
Further information:
http://www.qub.ac.uk

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>