Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer breakthrough to prevent heart failure and increase survival rates

10.02.2011
A breakthrough by scientists at Queen's University Belfast could help reduce heart failure in cancer patients around the world, and ultimately increase survival rates.

Scientists at Queen's Centre for Vision and Vascular Science have discovered the role of an enzyme which, when a patient receives chemotherapy, can cause life-threatening damage to the heart. This has, until now, restricted the amount of chemotherapy doses a patient can receive; but while protecting the heart, this dilutes the chemotherapy's effectiveness in destroying cancerous tumours.

By identifying the role of the enzyme - NADPH oxidase - work can now go ahead into making chemotherapy treatments more effective and reduce the toxic effects of cancer treatment on the heart.

Dr David Grieve, jointly leading on the research at Queen's School of Medicine, Dentistry and Biomedical Sciences said: "While chemotherapy drugs are highly effective in treating a wide range of tumours, they can also cause irreversible damage to the heart. This means that doctors are restricted in the doses they can administer to patients. In recent years, scientists have been searching for new drugs to prevent these side-effects.

"Although we have known about the NADPH oxidase enzyme for many years, until now, we were not aware of its crucial role in causing heart damage associated with chemotherapy. Our research findings hold clear potential for the creation of new drugs to block the action of the enzyme, which could significantly reduce heart damage in cancer patients.

"Ultimately, this could allow for the safer use of higher doses of chemotherapy drugs and make the treatment more effective against tumours. Despite improved treatments, cancer is currently responsible for 25 per cent of all mortality in the western world. By reducing the risk of heart failure associated with chemotherapy, patient survival rates could be significantly increased."

Scientists at Queen's are now concentrating their efforts on further studies to define the precise role of NADPH oxidase in the development of heart failure associated with cancer therapies. It is hoped that these may lead to the development of a drug which would have the potential to save lives among cancer patients.

The research by Dr David Grieve and Professor Barbara McDermott was funded by the British Heart Foundation in Northern Ireland and published in leading international journal, Cancer Research.

Media inquiries to Anne-Marie Clarke at Queen's University Communications Office on 00 44 (0)28 9097 5320 or email anne-marie.clarke@qub.ac.uk

Notes to Editors

1. Dr David Grieve is available for interview. Interview bids and photo requests to Anne-Marie Clarke on 00 44 (0)28 9097 5320 or email anne-marie.clarke@qub.ac.uk

2. This research was published in the leading international journal, Cancer Research (Volume 70 (22); pages 9287).

3. Enzymes are proteins that catalyse (increase or decrease the rates of) chemical reactions.

4. Around 7 per cent of cancer patients treated with the upper limit dosage of chemotherapy agent Doxorubicin currently develop heart failure. Doxorubicin is commonly used in the treatment of a wide range of cancers. Its most serious adverse effect is life-threatening heart damage. The drug is administered intravenously, in the form of hydrochloride salt. The drug was originally isolated in the 1950s from bacteria found in soil samples taken from Castel del Monte, an Italian castle.

5. The Centre for Vision & Vascular Science is one of the four Research Centres within the newly reconfigured School of Medicine, Dentistry and Biomedical Sciences. The Centre's research is multidisciplinary in nature, with an integrated mixture of approaches ranging from basic cell and molecular biology, pathophysiology of disease, genetic analysis, protein chemistry, patient-based investigation and clinical trials (www.qub.ac.uk/cvvs)

6. Dr David Grieve: After being awarded an honours degree at University of Dundee in 1995, David moved to The Royal Veterinary College in London where he completed his PhD thesis on "The role of dietary lipoproteins in the initiation of atherosclerosis" in 1998. He was then appointed as a post-doctoral scientist by Professor Ajay Shah in the newly established Cardiovascular Division at King's College London, where he worked for almost 7 years and received comprehensive training in cardiovascular research. In 2005, he became a Lecturer in Cardiovascular Physiology within the School of Medicine, Dentistry and Biomedical Sciences at Queen's University Belfast where he has now established his own research group. He has secured over £1 million in competitive grant funding, £800,000 of which has been as Principal Investigator. He has published over 30 peer-reviewed papers in the top journals in his subject area, including Circulation, Circulation Research, Journal of the American College of Cardiology and European Heart Journal. These publications carry an average impact factor of 6.5 and have received over 1200 citations. He has published over 60 peer-reviewed conference abstracts which have been largely presented at the main cardiovascular research meetings such as the American Heart Association and International Society for Heart Research (ISHR). His main research interest is focussed on the mechanisms underlying the development and progression of cardiovascular remodeling and dysfunction, with a particular interest in oxidative stress, diabetes, and the novel actions of incretin peptide hormones.

Anne-Marie Clarke | EurekAlert!
Further information:
http://www.qub.ac.uk

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>