Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer breakthrough to prevent heart failure and increase survival rates

10.02.2011
A breakthrough by scientists at Queen's University Belfast could help reduce heart failure in cancer patients around the world, and ultimately increase survival rates.

Scientists at Queen's Centre for Vision and Vascular Science have discovered the role of an enzyme which, when a patient receives chemotherapy, can cause life-threatening damage to the heart. This has, until now, restricted the amount of chemotherapy doses a patient can receive; but while protecting the heart, this dilutes the chemotherapy's effectiveness in destroying cancerous tumours.

By identifying the role of the enzyme - NADPH oxidase - work can now go ahead into making chemotherapy treatments more effective and reduce the toxic effects of cancer treatment on the heart.

Dr David Grieve, jointly leading on the research at Queen's School of Medicine, Dentistry and Biomedical Sciences said: "While chemotherapy drugs are highly effective in treating a wide range of tumours, they can also cause irreversible damage to the heart. This means that doctors are restricted in the doses they can administer to patients. In recent years, scientists have been searching for new drugs to prevent these side-effects.

"Although we have known about the NADPH oxidase enzyme for many years, until now, we were not aware of its crucial role in causing heart damage associated with chemotherapy. Our research findings hold clear potential for the creation of new drugs to block the action of the enzyme, which could significantly reduce heart damage in cancer patients.

"Ultimately, this could allow for the safer use of higher doses of chemotherapy drugs and make the treatment more effective against tumours. Despite improved treatments, cancer is currently responsible for 25 per cent of all mortality in the western world. By reducing the risk of heart failure associated with chemotherapy, patient survival rates could be significantly increased."

Scientists at Queen's are now concentrating their efforts on further studies to define the precise role of NADPH oxidase in the development of heart failure associated with cancer therapies. It is hoped that these may lead to the development of a drug which would have the potential to save lives among cancer patients.

The research by Dr David Grieve and Professor Barbara McDermott was funded by the British Heart Foundation in Northern Ireland and published in leading international journal, Cancer Research.

Media inquiries to Anne-Marie Clarke at Queen's University Communications Office on 00 44 (0)28 9097 5320 or email anne-marie.clarke@qub.ac.uk

Notes to Editors

1. Dr David Grieve is available for interview. Interview bids and photo requests to Anne-Marie Clarke on 00 44 (0)28 9097 5320 or email anne-marie.clarke@qub.ac.uk

2. This research was published in the leading international journal, Cancer Research (Volume 70 (22); pages 9287).

3. Enzymes are proteins that catalyse (increase or decrease the rates of) chemical reactions.

4. Around 7 per cent of cancer patients treated with the upper limit dosage of chemotherapy agent Doxorubicin currently develop heart failure. Doxorubicin is commonly used in the treatment of a wide range of cancers. Its most serious adverse effect is life-threatening heart damage. The drug is administered intravenously, in the form of hydrochloride salt. The drug was originally isolated in the 1950s from bacteria found in soil samples taken from Castel del Monte, an Italian castle.

5. The Centre for Vision & Vascular Science is one of the four Research Centres within the newly reconfigured School of Medicine, Dentistry and Biomedical Sciences. The Centre's research is multidisciplinary in nature, with an integrated mixture of approaches ranging from basic cell and molecular biology, pathophysiology of disease, genetic analysis, protein chemistry, patient-based investigation and clinical trials (www.qub.ac.uk/cvvs)

6. Dr David Grieve: After being awarded an honours degree at University of Dundee in 1995, David moved to The Royal Veterinary College in London where he completed his PhD thesis on "The role of dietary lipoproteins in the initiation of atherosclerosis" in 1998. He was then appointed as a post-doctoral scientist by Professor Ajay Shah in the newly established Cardiovascular Division at King's College London, where he worked for almost 7 years and received comprehensive training in cardiovascular research. In 2005, he became a Lecturer in Cardiovascular Physiology within the School of Medicine, Dentistry and Biomedical Sciences at Queen's University Belfast where he has now established his own research group. He has secured over £1 million in competitive grant funding, £800,000 of which has been as Principal Investigator. He has published over 30 peer-reviewed papers in the top journals in his subject area, including Circulation, Circulation Research, Journal of the American College of Cardiology and European Heart Journal. These publications carry an average impact factor of 6.5 and have received over 1200 citations. He has published over 60 peer-reviewed conference abstracts which have been largely presented at the main cardiovascular research meetings such as the American Heart Association and International Society for Heart Research (ISHR). His main research interest is focussed on the mechanisms underlying the development and progression of cardiovascular remodeling and dysfunction, with a particular interest in oxidative stress, diabetes, and the novel actions of incretin peptide hormones.

Anne-Marie Clarke | EurekAlert!
Further information:
http://www.qub.ac.uk

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>