Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canadian researchers lead groundbreaking discovery in deadly childhood cancer

11.12.2013
A new study by Canadian researchers may pave the way for more effective treatment of an aggressive and deadly type of brain tumour, known as ETMR/ETANTR.

The tumour, which is seen only in children under four, is almost always fatal, despite aggressive treatment. The study proposes a new model for how this brain tumour develops and suggests possible targets to investigate for novel therapies.

These findings, recently published in Nature Genetics, also shed new light on the complex process of early brain development. The study was led by the Research Institute of the McGill University Health Centre (RI-MUHC), the McGill University and Génome Québec Innovation Centre, and The Hospital for Sick Children (SickKids), and funded by the Cancer Research Society.

“We undertook this study because we wanted to learn what was driving the growth of these tumours and how best to treat them,” says the study’s co-principal investigator, Dr. Nada Jabado, hemato-oncologist at the Montreal Children's Hospital of the MUHC and an associate professor in the Department of Pediatrics at McGill University. “This is a very aggressive disease with poor outcomes for patients; we urgently need better treatments for these kids, and this study, which helps us better understand what happens in this tumour, moves us a little closer to that target.”

“Our recent collaborations with Dr. Jabado’s and Dr. Majewski’s labs and other colleagues have provided opportunities to take our initial discovery of this entity closer to finding innovative treatments for this disease, which we believe is an important, yet under-recognized, infantile brain tumour, ” says co-principal investigator Dr. Annie Huang, a brain tumour specialist at SickKids and senior scientist in Cell Biology at SickKids Research Institute and associate professor of Pediatrics at the University of Toronto. In 2009, her group had made the initial discovery that several forms of deadly brain tumours in young children were in fact this single entity (ETMR/ETANTR), characterized by a unifying genetic marker.

For the study, the research team produced “genomic” profiles of the ETMR/ETANTR tumors, and also integrated and analyzed data from five massive publicly available data sets. Their analysis suggested that, in patients with ETMR/ETANTR, a developmental pathway – a process involved in the early formation of an organ in an embryo – is somehow “hijacked.” As a result, patients produce a specific form of an enzyme known as DNMT3B far later in development and in far greater quantities than normal.

“Genomic approaches are offering unprecedented opportunities to understand cancer,” explains co-principal investigator, Dr. Jacek Majewski, associate professor in the Department of Human Genetics at McGill University and a researcher at the McGill University and Génome Québec Innovation Centre. “In the past, researchers would meticulously follow individual genes and proteins to try to piece together what goes awry in a tumour. Today, we can rapidly look at the entire genome and, using computational analysis, identify the incorrectly produced genes – all with very little prior knowledge of the biology of the disease. In the case of the ETMR/ETANTR, within a few months we were able to go from tumour to a very promising target gene – DNMT3B.”

Abnormalities in DNMT3B have previously been linked to a range of cognitive problems. Forms of this enzyme are also seen in some leukemia and breast cancer types, and are often associated with poor outcomes. The research team found that, in patients with ETMR/ETANTR, the enzyme was present in huge quantities and at a stage of development when it should not be present at all. From a clinical point of view, the results of this study suggest DNMT3B may be a suitable target for future therapies designed to combat ETMR/ETANTR.

“We now want to see if we can control the production of the enzyme in the tumour, and if doing so enables us to stall its growth,” says Dr. Jabado who is also a researcher in Medical Genetics and Genomics at the RI-MUHC.

“This is a great example of how research can produce exciting and at times groundbreaking results, and we are thrilled to have contributed to this study that will hopefully help to save children’s lives, and hopefully get more studies of its kind off the ground,” states Andy Chabot, President and CEO of the Cancer Research Society.

Findings from this study will be added to a global tumour registry and ETMR/ETANTR tumour bank established by Dr. Huang, which has collected nearly 100 of these rare tumours to date. Although more research is needed, the prospects for developing an effective treatment are becoming steadily brighter as scientists learn more about ETMR/ETANTR. Importantly, these findings highlight how studying rare pediatric brain tumours can provide invaluable insight into unsuspected molecular mechanisms of brain development.

About the study:

This work was supported by the Cancer Research Society. You will find the press release and the full paper by clicking on the following link: http://muhc.ca/newsroom/news/mcgill-researchers-lead-groundbreaking-discovery-deadly-childhood-cancer

Claudia L. Kleinman (The McGill University and Génome Québec Innovation Centre, Montreal and Department of Human Genetics, McGill University) and Noha Gerges (Department of Human Genetics, McGill University, Montreal) are first authors of the study.

Annie Huang (Arthur and Sonia Labatt Brain Tumour Research Centre, Cell Biology Program, SickKids Research Institute, Garron Family Cancer Center and Department of Pediatrics, University of Toronto, Toronto); Nada Jabado (Department of Human Genetics, McGill University and Department of Pediatrics, Pediatric Hemato-Oncology, Research Institute of the McGill University Health Centre, Montreal); Jacek Majewski (The McGill University and Génome Québec Innovation Centre, Montreal and Department of Human Genetics, McGill University) are co-principal investigators and co-corresponding authors of this paper.

Related links:
• Research Institute of the MUHC: www.muhc.ca/research
• The Montreal Children’s Hospital (MCH): www.thechildren.com
• McGill University: www.mcgill.ca
• The McGill University and Génome Québec Innovation Centre: www.gqinnovationcenter.com
• SickKids: www.sickkids.ca
• SickKids Research Institute, Huang Lab: www.sickkids.ca/Research/Huang-lab/index.html
• Arthur and Sonia Labatt Brain Tumour Research Centre: http://www.sickkids.ca/Research/BTRC/index.html
• Faculty of Medicine, University of Toronto: www.medicine.utoronto.ca
• Garron Family Cancer Centre: www.sickkids.ca/Centres/garron-family-cancer-centre/index.html

• Cancer Research Society: www.CancerResearchSociety.ca

For more information please contact:

Julie Robert
Public Affairs & Strategic planning
McGill University Health Centre
514 934-1934 ext. 71381
julie.robert@muhc.mcgill.ca
Suzanne Gold
Media Relations
The Hospital for Sick Children
416-813-7654 ext. 202059
suzanne.gold@sickkids.ca
Stéfanie Roche
Director, Communications and Marketing
Cancer Research Society
514 861-9227 ext. 283
sroche@src-crs.ca

Julie Robert | McGill University Health Centre
Further information:
http://www.muhc.mcgill.ca

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>