Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breath or Urine Analysis May Detect Cancer, Diabetes

12.03.2009
MU researcher is developing a sensor that identifies volatile markers that indicate disease
A future sensor may take away a patient's breath while simultaneously determining whether the patient has breast cancer, lung cancer, diabetes or asthma. A University of Missouri researcher is developing a device that will analyze breath or urine samples for volatile markers inside the body that indicate disease. These volatile markers, such as alkanes, acetones or nitric oxide, give doctors clues about what is happening inside the body and can be used as a diagnostic tool.

"Little traces of certain gas molecules in the breath or urine tell us if anything unusual is going on in the body," said Xudong "Sherman" Fan, investigator in the Christopher S. Bond Life Sciences Center. "Measuring these volatile markers would be a non-invasive way to determine if a disease is present without having to draw blood or complete a biopsy. In addition to the biomarkers already discovered, many more potential volatile markers are still under investigation."
The sensor device known as the opto-fluidic ring resonator (OFRR) is an optical gas sensor that consists of a polymer-lined glass tube that guides the flow of a gas vapor and a ring resonator that detects the molecules that pass through the glass tube. As the gas vapor enters the device, molecules in the vapor separate and react to the polymer lining. Light makes thousands of loops around the gas or liquid sample. The more the light loops around the sample, the more the light energy interacts with the gas vapor. These repetitive interactions enable the detection of vapor molecules down to a very small quantity.

Optical gas sensors have broad applications in the fields of industry, military, environment, medical care and homeland security. In addition to OFRR's application in the medical industry, the device also can improve the detection of explosives on the battlefield. Currently, the existing gas vapor sensor technology is very bulky with equipment weighing more than 100 pounds and is difficult to use in the field.
"We hope to design a vapor sensor that has ultra-high sensitivity, specific and rapid response to a certain molecule, as well as the ability of on-the-spot chemical analyses, which usually requires the sensor to be small, portable, reusable and have less power consumption," said Fan, who also is assistant professor of biological engineering in the MU College of Engineering and the MU College of Agriculture, Food and Natural Resources. "If the gas sensor is portable, military personnel can determine more quickly whether an area is dangerous."

Fan's research is funded by the National Science Foundation and has been published in peer-reviewed journals such as Optics Letters, Optics Express and Analytical Chemistry.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>