Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough opens new avenues for hep C vaccine

14.09.2011
Isolation of hepatitis C 'founder virus' reveals weakest links in virus makeup

Hopes for an effective vaccine and treatment against the potentially fatal hepatitis C virus (HCV) have received a major boost following the discovery of two 'Achilles' heels' within the virus.

A team of medical researchers from the University of New South Wales (UNSW) studied individuals at high risk of HCV infection, including a number identified within a few weeks of the onset of infection.

Using a new technique called next generation deep sequencing and sophisticated computer analytics the team, led by Professor Andrew Lloyd and Associate Professor Peter White, were able to identify the 'founder' virus responsible for the initial infection and then track changes within the virus as it was targeted by the immune system.

"We discovered that hepatitis C has not one but two 'Achilles' heels' that provide opportunities for vaccine development," said Dr Fabio Luciani, from UNSW's Inflammation and Infection Research Centre and the research team's biostatistician.

"If we can help the immune system to attack the virus at these weak points early on, then we could eliminate the infection in the body completely," he said.

A paper describing the breakthrough appears in the leading scientific journal in the field of virology, PLoS Pathogens.

Hepatitis C virus infection is a global pandemic with more than 120 million people infected worldwide, including some 200,000 Australians. The virus causes progressive liver disease leading to cirrhosis, liver failure and cancer. Current antiviral treatments are arduous, costly, and only partially effective.

Team member and virologist Dr Rowena Bull said the discovery of the weakest links meant vaccine researchers could now focus their attentions on the most likely avenues for success.

"The first weak point was identified at transmission, when the virus has to survive the transfer from one individual to another," Dr Bull said.

"The second weakness, and surprise finding, was the significant drop in the diversity of the viral variants in each individual studied, occurring about three months after transmission, around the time where the immune system is starting to combat the virus. A lower number of variants means the virus is easier to target."

Study leader Professor Lloyd said the discoveries were significant because of their potential to overcome longstanding barriers to hepatitis C vaccine development.

"To date hepatitis C has been difficult to target with single interventions because there are many different strains of the virus," he said. "In addition, like HIV, the hepatitis C virus mutates very rapidly and exists as a complex family of mutated viruses within every infected individual, meaning the virus can avoid efforts by the immune system to keep it under control," Professor Lloyd said.

"What's more, a third of infected people can have an effective immune response that eliminates the virus early on. This means key initial immune responses were difficult to identify and study because early infection and elimination can go unrecognised."

Professor Lloyd said work is now underway to identify the key immunological features of the founder viruses in order to guide new vaccines.

"Further research will test the extent of the immune response against these founder viruses in a cohort of very early infected individuals," he said.

The research team included members from UNSW's Kirby Institute, The University of Western Australia and Murdoch University, and was supported by a National Health and Medical Research Council of Australia (NHMRC) Program Grant and by grants from Australian Centre for HIV and Hepatitis Virology.

Professor Andrew Lloyd | EurekAlert!
Further information:
http://www.unsw.edu.au

Further reports about: HCV HIV hepatitis C virus immune response immune system vaccine development

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>