Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough opens new avenues for hep C vaccine

14.09.2011
Isolation of hepatitis C 'founder virus' reveals weakest links in virus makeup

Hopes for an effective vaccine and treatment against the potentially fatal hepatitis C virus (HCV) have received a major boost following the discovery of two 'Achilles' heels' within the virus.

A team of medical researchers from the University of New South Wales (UNSW) studied individuals at high risk of HCV infection, including a number identified within a few weeks of the onset of infection.

Using a new technique called next generation deep sequencing and sophisticated computer analytics the team, led by Professor Andrew Lloyd and Associate Professor Peter White, were able to identify the 'founder' virus responsible for the initial infection and then track changes within the virus as it was targeted by the immune system.

"We discovered that hepatitis C has not one but two 'Achilles' heels' that provide opportunities for vaccine development," said Dr Fabio Luciani, from UNSW's Inflammation and Infection Research Centre and the research team's biostatistician.

"If we can help the immune system to attack the virus at these weak points early on, then we could eliminate the infection in the body completely," he said.

A paper describing the breakthrough appears in the leading scientific journal in the field of virology, PLoS Pathogens.

Hepatitis C virus infection is a global pandemic with more than 120 million people infected worldwide, including some 200,000 Australians. The virus causes progressive liver disease leading to cirrhosis, liver failure and cancer. Current antiviral treatments are arduous, costly, and only partially effective.

Team member and virologist Dr Rowena Bull said the discovery of the weakest links meant vaccine researchers could now focus their attentions on the most likely avenues for success.

"The first weak point was identified at transmission, when the virus has to survive the transfer from one individual to another," Dr Bull said.

"The second weakness, and surprise finding, was the significant drop in the diversity of the viral variants in each individual studied, occurring about three months after transmission, around the time where the immune system is starting to combat the virus. A lower number of variants means the virus is easier to target."

Study leader Professor Lloyd said the discoveries were significant because of their potential to overcome longstanding barriers to hepatitis C vaccine development.

"To date hepatitis C has been difficult to target with single interventions because there are many different strains of the virus," he said. "In addition, like HIV, the hepatitis C virus mutates very rapidly and exists as a complex family of mutated viruses within every infected individual, meaning the virus can avoid efforts by the immune system to keep it under control," Professor Lloyd said.

"What's more, a third of infected people can have an effective immune response that eliminates the virus early on. This means key initial immune responses were difficult to identify and study because early infection and elimination can go unrecognised."

Professor Lloyd said work is now underway to identify the key immunological features of the founder viruses in order to guide new vaccines.

"Further research will test the extent of the immune response against these founder viruses in a cohort of very early infected individuals," he said.

The research team included members from UNSW's Kirby Institute, The University of Western Australia and Murdoch University, and was supported by a National Health and Medical Research Council of Australia (NHMRC) Program Grant and by grants from Australian Centre for HIV and Hepatitis Virology.

Professor Andrew Lloyd | EurekAlert!
Further information:
http://www.unsw.edu.au

Further reports about: HCV HIV hepatitis C virus immune response immune system vaccine development

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>