Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Beyond the brain: vascular changes in the neck may play role in Alzheimer’s

Studies on Alzheimer’s disease and other forms of dementia have long focused on what’s happening inside the brain. Now an international research team studying Alzheimer’s and mild cognitive impairment is reporting potentially significant findings on a vascular abnormality outside the brain.

The finding has potential implications for a better understanding of Alzheimer’s and other neurological disorders associated with aging.

The pilot study was published in the Journal of Alzheimer’s Disease Nov. 8 online ahead of print by researchers from the University at Buffalo, the University of Bradford in the United Kingdom and National Yang-Ming University School of Medicine in Taiwan. The authors caution that the study is small and that the results must be validated in larger, future studies.

They studied a hemodynamic abnormality in the internal jugular veins called jugular venous reflux or JVR. It occurs when the pressure gradient reverses the direction of blood flow in the veins, causing blood to leak backwards into the brain.

JVR occurs in certain physiological situations, if the internal jugular vein valves do not open and close properly, which occurs more frequently in the elderly. This reverse flow is also believed to impair cerebral venous drainage.

“We were especially interested to find an association between JVR and white matter changes in the brains of patients with Alzheimer’s disease and those with mild cognitive impairment,” says Robert Zivadinov, MD, PhD, FAAN, professor of neurology at the UB School of Medicine and Biomedical Sciences and senior author.

The brain’s white matter is made of myelin and axons that enable communication between nerve cells.

“Age-related white matter changes have long been associated with dementia and faster cognitive decline,” he says. “To the best of our knowledge, our study is the first to show that JVR is associated with a higher frequency of white matter changes, which occur in patients with mild cognitive impairment and Alzheimer’s disease.”

Ching-Ping Chung, the first author on the study and assistant professor of neurology at National Yang-Ming University, adds: “We are the first to observe that JVR may be associated with formation of these lesions in the brain, given the fact that Alzheimer’s patients have more white matter lesions than healthy people.

“If this observation is validated in larger studies,” she continues, “it could be significant for the development of new diagnostic tools and treatments for pathological white matter lesions developed in Alzheimer’s disease and other forms of dementia.”

White matter changes have been found to have a direct relationship to the buildup of amyloid plaque long seen as central to the development of Alzheimer’s disease.

“The accumulation of amyloid plaque may result from the inability of cerebrospinal fluid to be properly cleared from the brain,” says Clive Beggs, second author on the study and professor of medical engineering at the University of Bradford. In addition, he says, the study found that JVR appeared to be associated with dirty-appearing white matter, which is thought to represent early stage lesion formation.

“To the best of our knowledge, this is one of the first studies to explore the impact of dirty-appearing white matter in the elderly,” Beggs continues. He adds that the significance of dirty-appearing white matter in the elderly needs more study.

The research involved 12 patients with Alzheimer’s disease, 24 with mild cognitive impairment and 17 age-matched elderly controls. Participants underwent Doppler ultrasound exams and magnetic resonance imaging scans.

The impact of hemodynamic changes in veins from the brain to the neck has been the focus of numerous studies by Zivadinov and colleagues at UB and institutions worldwide.

“Given the major finding of our group in 2011 that both healthy controls and people with a variety of neurological diseases present with structural and hemodynamic changes of the extracranial venous system, we thought it was important to study how they might be involved in the development of Alzheimer’s disease and other important neurodegenerative conditions,” he explains.

Zivadinov notes that the frequency of JVR increases with aging and its accumulated effects on cerebral circulation may take many years to develop. Patients are likely to be asymptomatic for a long time, which would explain why the condition is seen in both healthy people and those with neurological diseases, he adds.

Co-authors besides Zivadinov, Chung and Beggs are Simon Shepherd of the Centre for Infection Control and Biophysics at the University of Bradford; Pei-Ning Wang, Chun-Yu Cheng and Han-Hwa Hu, all of Taipei Veterans General Hospital in Taipei and National Yang-Ming University; and Niels Bergsland, Deepa P. Ramasamy and Michael G. Dwyer all of the Buffalo Neuroimaging Analysis Center in the UB Department of Neurology.

Media Contact Information

Ellen Goldbaum
Senior Editor, Medicine
Tel: 716-645-4605
Twitter: @egoldbaum

Ellen Goldbaum | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>