Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain abnormality found in boys with attention deficit hyperactivity disorder

19.03.2009
Researchers trying to uncover the mechanisms that cause attention deficit hyperactivity disorder and conduct disorder have found an abnormality in the brains of adolescent boys suffering from the conditions, but not where they expected to find it.

Boys with either or both of these disorders exhibited a different pattern of brain activity than normally developing boys when they played a simple game that sometimes gave them a monetary reward for correct answers, according to a new study by a University of Washington research team.

The research focused on two brain areas, the striatum and anterior cingulate cortex. The striatal region is a network of structures in the mid brain that motivates people to engage in pleasurable or rewarding behavior. The anterior cingulate is higher in the brain and normally activates when an expected reward stops. However, this process, called extinction, doesn't occur, at least as quickly, in boys with attention deficit hyperactivity or conduct disorders. Instead, the striatal region continues to be activated, said Theodore Beauchaine, a UW associate professor of psychology and senior author of the paper.

"When children engage in impulsive behavior they are looking to stimulate themselves and have fun. Children with attention deficit hyperactivity disorder are always looking to have fun and that is what gets them in trouble," he said. "A behavior should stop when the reward stops. When you stop the reward for children with these disorders, they continue to focus on the reward long afterward and the anterior cingulate does not appear to become activated."

Attention deficit hyperactivity disorder is one of the most common mental disorders among children, affecting between 3 and 5 percent of school-age youngsters, or an estimated 2 million.

The researchers used functional magnetic resonance imaging to compare brain activity in 19 boys with either or both disorders and 11 normally developing boys. The adolescents ranged in age from 12 to 16.

Their brains were scanned while they played the game. The boys looked at a screen and there was a button under each of their thumbs. When a light flashed on the left or right side of the screen they were instructed to press the button on that side. The screen lit up very fast, up to 100 times a minute. The boys received five cents for each correct response and could win up to $50. They were not penalized for wrong answers and their accumulated winnings showed up on the screen.

Each boy had four five-minute blocks of trials. The first and third trials involved opportunities to earn money. The second and fourth trials did not involve winning money, but the boys were told to keep playing the game because the game would change at some point.

Beauchaine said there was no difference in the accuracy or speed – the behavioral response – between the two groups. But there was a difference in brain activation. When the non-reward blocks came up the anterior cingulate lit up for normally developing boys, but those with either of the disorders, which frequently co-occur, continued to only show activation in the striatum.

"This shows there is an abnormality, but not in the place we expected to find it. We expected to find a difference in the way the striatum functions, but instead found it in anterior cingulate functioning," said Beauchaine.

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>