Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BPA substitute could spell trouble

23.01.2013
Experiments show bisphenol S also disrupts hormone activity

A few years ago, manufacturers of water bottles, food containers, and baby products had a big problem. A key ingredient of the plastics they used to make their merchandise, an organic compound called bisphenol A, had been linked by scientists to diabetes, asthma and cancer and altered prostate and neurological development. The FDA and state legislatures were considering action to restrict BPA's use, and the public was pressuring retailers to remove BPA-containing items from their shelves.

The industry responded by creating "BPA-free" products, which were made from plastic containing a compound called bisphenol S. In addition to having similar names, BPA and BPS share a similar structure and versatility: BPS is now known to be used in everything from currency to thermal receipt paper, and widespread human exposure to BPS was confirmed in a 2012 analysis of urine samples taken in the U.S., Japan, China and five other Asian countries.

According to a study by University of Texas Medical Branch at Galveston researchers, though, BPS also resembles BPA in a more problematic way. Like BPA, the study found, BPS disrupts cellular responses to the hormone estrogen, changing patterns of cell growth and death and hormone release. Also like BPA, it does so at extremely low levels of exposure.

"Our studies show that BPS is active at femtomolar to picomolar concentrations just like endogenous hormones —that's in the range of parts per trillion to quadrillion," said UTMB professor Cheryl Watson, senior author of a paper on the study now online in the advance publications section of Environmental Health Perspectives. "Those are levels likely to be produced by BPS leaching from containers into their contents."

Watson and graduate student René Viñas conducted cell-culture experiments to examine the effects of BPS on a form of signaling that involves estrogen receptors — the "receivers" of a biochemical message — acting in the cell's outer membrane instead of the cell nucleus. Where nuclear signaling involves interaction with DNA to produce proteins and requires hours to days, membrane signaling (also called "non-genomic" signaling) acts through much quicker mechanisms, generating a response in seconds or minutes.

Watson and Viñas focused on key biochemical pathways that are normally stimulated when estrogen activates membrane receptors. One, involving a protein known as ERK, is linked to cell growth; another, labeled JNK, is tied to cell death. In addition, they examined the ability of BPS to activate proteins called caspases (also linked to cell death) and promote the release of prolactin, a hormone that stimulates lactation and influences many other functions.

"These pathways form a complicated web of signals, and we're going to need to study them more closely to fully understand how they work," Watson said. "On its own, though, this study shows us that very low levels of BPS can disrupt natural estrogen hormone actions in ways similar to what we see with BPA. That's a real cause for concern."

This research was supported by the Passport Foundation and the National Institutes of Health.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

Further reports about: BPA BPS cell death cell growth estrogen receptor health services

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>